Чтение онлайн

на главную - закладки

Жанры

Сигнал и шум. Почему одни прогнозы сбываются, а другие - нет

Сильвер Нейт

Шрифт:

Подобные вещи прогнозисты понимают со временем, учась обходить недостатки модели, наподобие того как опытный игрок в пул привыкает обходить слепые зоны бильярдного стола в местном баре.

Уникальным ресурсом этих прогнозистов было и остается их умение видеть. Этот инструмент важен в любой дисциплине – визуальное изучение графика, показывающего взаимодействие между двумя переменными, часто оказывается более быстрым и более надежным способом выявить странные искажения данных, чем статистический тест. Это также одна из тех областей, в которых компьютеры сильно отстают от человеческого мозга. Стоит немного изменить последовательность букв – как в случае технологии CAPTCHA [68] , часто использующейся для противостояния спаму в качестве средства защиты паролей (рис. 4.3), – и даже самые «толковые» компьютеры начинают смущаться. Они воспринимают информацию слишком буквально. Они неспособны распознать закономерность, подвергшуюся даже небольшой манипуляции. Люди же, в силу эволюционной необходимости, обладают мощными визуальными способностями.

Они быстро отсеивают любые искажения закономерностей и могут распознать такие абстрактные вещи, как закономерности и организация, то есть то, что оказывается особенно важным в различных типах погодных систем.

68

CAPTCHA (Completely Automated Public Turing test to tell Humans from Computers Apart) – полностью автоматический тест Тьюринга для распознания компьютеров и людей; в русской транскрипции – капча.

Рис. 4.3. Пример теста CAPTCHA

На самом деле, в старые времена, когда метеорологические компьютеры были еще не особенно полезными, прогнозирование погоды представляло собой почти полностью визуальный процесс. Вместо дисплеев в офисах стояли столы с подсветкой, на которых лежали карты. Метеорологи корректировали рисунки на картах с помощью мелков или цветных карандашей. Хотя последняя доска с подсветкой была отправлена в отставку уже много лет назад, дух этого метода живет и в наши дни.

По словам Хоука, самые квалифицированные синоптики-прогнозисты должны обладать способностью думать визуально и абстрактно, но в то же самое время им необходимо разбираться с огромными массивами информации, которой снабжает их компьютер. Более того, они должны понимать динамическую и нелинейную природу изучаемой ими системы. Это непростая задача, требующая тщательного использования и правого, и левого полушарий. Многие из прогнозистов могли бы стать хорошими инженерами или программистами с куда большей зарплатой, однако они сознательно решают стать метеорологами.

NWS постоянно отслеживает два типа данных: первый показывает, насколько хорошо компьютеры справляются в одиночку, а второй оценивает долю человеческого вклада. Судя по статистическим данным, люди способны улучшить правильность компьютерных прогнозов выпадения осадков примерно на 25 % {267} , а прогнозов погоды – примерно на 10 % {268} .

Более того, согласно Хоуку, эти сравнительные данные практически не менялись со временем: какой бы прогресс ни происходил в компьютерных технологиях, люди-прогнозисты могут еще лучше повысить их ценность. Видение стоит дорогого.

267

«HPC% Improvement to NCEP Models (1-Inch Day 1 QPF Forecast)», Hydro Meteorological Prediction Center, National Oceanic and Atmospheric Association. http://www.hpc.ncep.noaa.gov/images/hpcvrf/1inQPFImpann.gif.

268

«HPC Pct Improvement vs MOS (Max Temp MAE: Stations Adjusted >= 1 F)», Hydro Meteorological Prediction Center, National Oceanic and Atmospheric Association. http://www.hpc.ncep.noaa.gov/images/hpcvrf/max1.gif.

Вероятность погибнуть от удара молнии становится все меньше

Когда Хоук только начинал начал свою карьеру в середине 1970-х, анекдоты о синоптиках были недалеки от истины. Например, в прогнозах погоды NWS, сделанных за три дня, максимальное отклонение от прогнозируемой температуры достигало примерно 6 ° F (рис. 4.4). Это ненамного лучше, чем в случае составления прогноза на основе обычного изучения таблицы долгосрочных средних значений. Однако партнерство между человеком и машиной способно принести немалые дивиденды. В наши дни средняя величина ошибки составляет примерно 3,5 ° F – иными словами, она стала примерно наполовину меньше. Также синоптикам удается значительно лучше предсказывать аномальные погодные явления.

Рис. 4.4. Ошибка в определении среднемесячной максимальной температуры в прогнозах NWS

Какова вероятность получить смертельный удар молнии? На самом деле, значение этого показателя не постоянная величина, которая зависит, например, от вероятности того, будете ли вы на улице в момент возникновения молнии. В 1940 г. вероятность смерти жителя Америки от удара молнии в определенный год составляла примерно 1 из 400 000 {269} . В наши дни вероятность этого события равна всего 1 из 11 000 000 (то есть ее величина снизилась почти в 30 раз). Отчасти это связано с изменением образа жизни (всё больше работы в наши дни производится в домах) и улучшением коммуникации в области технологий и здравоохранения, но также это связано и с тем, что прогнозы погоды становятся более точными.

269

«Weather Fatalities», National Weather Service, National Oceanic and Atmospheric Association. http://www.nws.noaa.gov/om/hazstats/images/weather_fatalities.pdf.

Возможно,

самые впечатляющие успехи были достигнуты в предсказании ураганов. Всего 25 лет назад, когда Национальный центр по ураганам попытался дать предварительный прогноз местонахождения территории, по которой в ближайшие три дня ударит ураган, диапазон ошибки составлял в среднем 560 км {270} . Это слишком много. Нарисуйте, допустим, окружность с радиусом 560 км вокруг Нового Орлеана, и она покроет все точки от Хьюстона, штат Техас, до Таллахасси, штат Флорида (рис. 4.5). Эвакуировать людей с такой большой территории просто невозможно.

270

«NHC Tropical Cyclone Forecast Verification», National Hurricane Center, National Weather Service, National Oceanic and Atmospheric Association; updated March 1, 2012. http://www.nhc.noaa.gov/verification/verify5.shtml.

Рис. 4.5. Улучшение качества прогнозирования поведения ураганов

В наши дни величина погрешности равна примерно сотне миль, то есть наша окружность охватит лишь юго-восток Луизианы и южную границу Миссисипи. Время от времени ураганы будут выбиваться за пределы этой зоны, но теперь в большинстве случаев нам имеет смысл обращать внимание на заметно меньшую по площади зону, эвакуировать жителей из которой можно за 72 часа. Для сравнения, в 1985 г. такую же степень точности обеспечивали лишь прогнозы, созданные менее чем за 24 часа до события. Это значит, что теперь у нас есть еще дополнительно двое суток до удара урагана – а как мы увидим позже, при эвакуации города типа Нового Орлеана критически важным оказывается каждый час [69] .

69

К сожалению, хотя специалистам в области прогнозирования удается значительно лучше выяснять, где ураган нанесет свой удар, у них до сих пор не получается предсказать его силу. Причина этого состоит в том, что силы, управляющие интенсивностью урагана, проявляются в значительно меньшем масштабе, чем те, что определяют его направление. Это означает, что для их анализа нужны более тонкие инструменты, и даже Bluefire пока что не может в полной мере справиться с задачей. – Прим. авт.

Службе погоды еще не удалось избавиться от Демона Лапласа, однако вполне можно полагать, что она заслуживает большего признания, чем принято считать. Наука прогнозирования погоды довольно успешно развивается, несмотря на все проблемы, связанные с особенностями метеорологических условий. В этой книге вы неоднократно увидите, что при составлении прогнозов это является скорее исключением, чем правилом (так что приберегите свои шутки для экономистов).

Усилия Национальной службы погоды часто недооценивают. Она сталкивается с жесткой конкуренцией со стороны частных компаний {271} , работающих в совершенно иных условиях. В отличие от всех других игроков, Служба погоды должна предоставлять свои данные моделирования бесплатно всем желающим (большинство других стран с хорошими погодными бюро продают лицензии или взимают плату за использование своих данных). Частные компании типа AccuWeather и Weather Channel могут затем использовать их как основу для развития собственных продуктов и их коммерческого распространения. Подавляющее большинство потребителей получают прогнозы от одного из частных поставщиков; трафик сайта телеканала Weather Channel (Weather.com) примерно в десять раз превышает трафик Weather.gov {272} .

271

Еще одним объектом конкуренции выступают средства налогоплательщиков. До тех пор пока живет память об урагане «Катрина» как о событии, которое не только привело к человеческим жертвам, но и являлось прецедентом, когда государство прямо отвечало за свою реакцию на него, Служба погоды будет, возможно, защищена от значительных бюджетных сокращений. Однако беспокойство о бюджетах остается объектом постоянной паранойи в Кэмп-Спрингс: многим представляется, что какой-нибудь умник в Вашингтоне посчитает, что компьютеры отлично справляются с задачами и что нужды в людях-синоптиках больше нет. Президент Обама предложил в 2013 г. Службе погоды увеличить финансирование на погодные спутники, но срезать финансирование основной операционной деятельности и исследований.

272

Расчеты трафика приводятся на основании данных Alexa.com.

В целом я большой сторонник конкуренции на свободном рынке или конкуренции между государственными и частными компаниями. Во многом именно благодаря конкуренции бейсбол активно развивался и смог лучше совмещать знания скаутов и статистиков при прогнозировании развития игроков.

Как видите, в бейсболе идея конкуренции более ясна – сколько мячей ты выиграл (или же соотношение выигранных и проигранных мячей). В прогнозировании погоды ситуация несколько более сложная, а перед частными и государственными прогнозистами стояли разные задачи.

Поделиться:
Популярные книги

Гранд империи

Земляной Андрей Борисович
3. Страж
Фантастика:
фэнтези
попаданцы
альтернативная история
5.60
рейтинг книги
Гранд империи

Взводный

Берг Александр Анатольевич
5. Антиблицкриг
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Взводный

Наследник павшего дома. Том IV

Вайс Александр
4. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том IV

Купец IV ранга

Вяч Павел
4. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец IV ранга

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

Мама из другого мира. Чужих детей не бывает

Рыжая Ехидна
Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.79
рейтинг книги
Мама из другого мира. Чужих детей не бывает

Сделай это со мной снова

Рам Янка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сделай это со мной снова

Аргумент барона Бронина

Ковальчук Олег Валентинович
1. Аргумент барона Бронина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аргумент барона Бронина

Найдёныш. Книга 2

Гуминский Валерий Михайлович
Найденыш
Фантастика:
альтернативная история
4.25
рейтинг книги
Найдёныш. Книга 2

Неудержимый. Книга XIV

Боярский Андрей
14. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIV

Двойник Короля 5

Скабер Артемий
5. Двойник Короля
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Двойник Короля 5

Законы рода

Flow Ascold
1. Граф Берестьев
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Законы рода

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2