Сигнал и шум. Почему одни прогнозы сбываются, а другие - нет
Шрифт:
Однако вам нужно учитывать не только эти два измерения. В верхних слоях атмосферы могут проявляться одни закономерности, а в нижних слоях, над океанами и у поверхности Земли – совершенно иные. В трехмерной вселенной двукратное увеличение разрешения нашей сетки потребует восьмикратного повышения вычислительной мощности. Кроме этого, имеется и четвертое измерение – время. Если метеорологическая модель статична, в ней нет никакого толка – самое главное для нас состоит в том, чтобы знать, как меняется погода в каждый момент времени. Шторм движется со скоростью примерно 40 миль
Но если бы эта проблема оказалась единственной, то ее вполне можно было бы решить. Хотя вам нужно, грубо говоря, в 16 раз увеличить вычислительную мощность, чтобы удвоить разрешение прогноза погоды, сама вычислительная мощность растет по экспоненте, удваиваясь примерно каждые два года {254} . Это значит, что вам нужно подождать всего восемь лет, и тогда ваш прогноз станет в два раза точнее; интересно, что NCAR обновляет свои суперкомпьютеры примерно с такой же частотой.
254
«Moore’s Law», Intel Corporation, 2005. ftp://download.intel.com/museum/Moores_Law/Printed_Materials/Moores_Law_2pg.pdf.
Предположим, что вам удалось разобраться с законами динамики движения жидкостей, которым подчиняются погодные системы. Они в целом следуют ньютоновским законам. Вам не будет особенно мешать и принцип неопределенности, интересный для физиков. Вы получили доступ к компьютерному шедевру типа Bluefire. Вы наняли Ричарда Лофта для проектирования и тестирования компьютерных программ. Что же еще может пойти не так в этом случае?
Почему теория хаоса так напоминает безумие
Итак, с чем может быть связана очередная ваша проблема? С теорией хаоса. Возможно, вам доводилось слышать выражение «взмах крыльев бабочки в Бразилии может привести к торнадо в Техасе». Изначально это было частью заглавия научной работы {255} , представленной в 1972 г. преподавателем Массачусетского технологического института Эдвардом Лоренцем, который начинал свою карьеру как метеоролог. Теория хаоса применима в отношении систем, для которых справедливы два утверждения:
255
Работа Лоренца изначально не была опубликована. Он произнес речь по ее тезисам на собрании Американской ассоциации развития науки 29 декабря 1972 г. Позднее, однако, она вошла в состав книги Лоренца The Essence of Chaos (Seattle: University of Washington Press,1995). http://www.washington.edu/uwpress/search/books/LORESS.html.
1) системы динамичны, что означает, что поведение системы в один момент времени влияет на ее поведение в будущем;
2) системы нелинейны, иными словами, в них поддерживаются скорее экспоненциальные, а не аддитивные связи.
Динамические системы доставляют специалистам по прогнозированию немало проблем. Примером может служить описанный в главе 6 факт, свидетельствующий о том, что американская экономика постоянно вызывает цепную реакцию событий, что и является одной из причин, по которым ее развитие так сложно предсказать. Развитие при этом остается нелинейным: ценные бумаги, обеспеченные закладными, стимулировавшие начало финансового кризиса, были разработаны таким образом, что небольшие изменения в макроэкономических условиях значительно повышали риск дефолта по ним.
Совмещая все эти параметры,
Лоренц и его команда разрабатывали программу прогнозирования погоды на одном из первых компьютеров, известном как Royal McBee LGP-30 {257} . Исследователи полагали, что все идет как надо, но лишь до тех пор, пока компьютеры не начали выдавать совершенно бессмысленные результаты.
256
Douglas Allchin, «Penicillin and Chance», SHiPS Resource Center. http://www1.umn.edu/ships/updates/leming.htm.
257
По материалам интервью с Ричардом Лофтом.
Они начали еще раз анализировать, почему так получается, что, вводя в точности те же самые, как они считали, данные, после запуска программы на выходе в качестве результата они получают в одном случае – чистое небо над Канзасом, а в другом – сведения о надвигавшемся шторме.
После нескольких недель, проведенных за проверкой оборудования и программ, Лоренц и его команда поняли, что исходные данные не были в точности одинаковыми: один из техников не вводил в систему цифры после третьего знака после запятой. Например, вместо того чтобы вводить в одно из полей сетки значение атмосферного давления, равное 29,5168, в расчетах использовалось число 29,517. Неужели вся разница возникла именно из-за этого?
Лоренц понял, что это действительно так. Один из основных постулатов теории хаоса гласит, что небольшое изменение в начальных условиях – бабочка машет крыльями в Бразилии – может привести к масштабному и неожиданному развитию последующих событий – торнадо в Техасе.
Это не значит, что поведение системы случайно, как можно было бы считать, увидев слово «хаос». Более того, теория хаоса отнюдь не является проявлением одного из следствий знаменитого Закона Мерфи («если что-то может пойти не так, оно обязательно пойдет не так»). Это всего лишь значит, что поведение систем определенного типа достаточно сложно предсказать.
Проблема возникает тогда, когда наши данные не совсем точны (или неточны наши предположения, как в случае ценных бумаг, обеспеченных закладными). Представьте себе, что мы должны были сложить вместе 5 и 5, однако неправильно взяли второе число. Вместо того чтобы сложить 5 и 5, мы сложили 5 и 6. Это получим 11, хотя правильный ответ равен 10. Мы ошибемся, но ненамного: сложение, как линейное действие, умеет прощать. Куда хуже будут обстоять дела в том случае, когда мы возводим число в степень. Если вместо того, чтобы рассчитать значение 55, равное 3215, мы рассчитаем 56, то получим в результате 15 625. И это уже серьезная ошибка – мы промахнулись на 500 %.
Значимость подобных неточностей существенно возрастает, когда речь идет о динамическом процессе, при котором результат вычислений одного этапа становится входящими данными следующего. Например, предположим, что нам нужно рассчитать, чему будет равно пять в шестой степени, а затем возвести полученное значение в пятую степень. Если мы допустим ту же ошибку, что и выше, и заменим вторую цифру 5 на 6, то ошибка в окончательном результате увеличится примерно в 3000 раз {258} . Влияние небольшой и, на первый взгляд, тривиальной ошибки становится все больше и больше.
258
5^5^5 равно 298 023 223 876 953 000, то есть около 298 квадрильонов. Однако 5^6^5 равно 931 322 574 615 479 000 000, или около 931 квинтильона. Эта «небольшая» ошибка могла бы привести к тому, что мы ошиблись бы в расчете нужного значения в 3125 раз.