Чтение онлайн

на главную - закладки

Жанры

Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде
Шрифт:

Конечно, понимание этой структуры – не конечная цель: впереди было еще много исследований. Но несмотря на это, М2 продолжала заниматься незаурядной работой: в 1953 году читала лекции в Сорбонне (став первой женщиной на такой работе после Марии Склодовской-Кюри) и пока была жива – Мириам Стинсон скончалась в 2002 году в возрасте 89 лет – ее научные амбиции постепенно иссякали. В либеральные шестидесятые она перестала носить рясу с клобуком (и научилась водить), но, не считая этого небольшого отступления от правил, она посвятила свою жизнь монашескому ордену и перестала делать опыты. Ее работы позволили другим ученым-первооткрывателям, среди которых были и две женщины, разгадать, как ДНК на самом деле участвует в построении красивой и сложной жизни [27] .

27

Тем, кто хочет больше узнать о жизни Мириам Стинсон,

всячески рекомендую книгу Джун Цуджи T e soul of DNA.

* * *

История науки изобилует дублирующими друг друга открытиями. Естественный отбор, кислород, Нептун, пятна на солнце – каждое из этих открытий одновременно делали два, три, четыре специалиста. Историки продолжают спорить, почему так получается. Возможно, каждый случай – это невероятное совпадение, или один из первооткрывателей заимствует идеи другого. Вероятно, открытия были невозможны, пока обстоятельства не сложатся должным образом, и неизбежны – когда это произошло. Но вне зависимости от того, в какую из причин верите вы, научная синхронность остается фактом. Несколько команд почти дошли до идеи двойной спирали, а в 1963 году две группы ученых открыли другой важнейший аспект ДНК. Одна из этих групп использовала микроскопы, чтобы запечатлеть митохондрии: элементы в форме фасолины, производящие энергию внутри клетки. Вторая группа измельчала митохондрии и просеивала их через мембрану. Обе группы пришли к открытию, что митохондрии обладают собственным ДНК. Пытаясь обелить свою репутацию среди коллег в конце XIX века, Фридрих Мишер определил ядро как единственно возможный дом для ДНК, однако затем история в очередной раз его опровергла.

Некоторым открытиям способствуют исторические события: наука нуждается в бунтарях – типах, которые привыкли плыть против течения и могут рассмотреть благоприятные обстоятельства, на которые большинство из нас не обратит никакого внимания. Порой нам даже нужны особо неприятные бунтари – так как если бы они не высказывали провокационных мыслей, их теории не привлекли бы нашего внимания. Так обстояли дела и с Линн Маргулис. Большинство специалистов из середины 1960-х годов весьма примитивным образом объясняли происхождение митохондриальной ДНК (мтДНК): якобы клетки «одалживают» часть ДНК и никогда не получают ее назад. Но Маргулис на протяжении 20 лет, начиная с защиты докторской диссертации в 1965 году, продвигала свою идею о том, что митохондриальная ДНК ни в коей мере не является курьезом. Она увидела в этом доказательство более глобальной проблемы, доказательство того, что в жизни есть больше путей смешивания и развития, чем биологи-консерваторы могут себе представить.

Эндосимбиотическая теория Маргулис выглядела примерно так. Все мы произошли от первых бактерий на Земле, и все живущие организмы до сих пор сохраняют определенные гены (в среднем около сотни) как часть этого наследия. Первые бактерии вскоре начали разделяться на группы. Одни из них превратились в гигантские капли, другие, наоборот, съежились до совсем уж крохотных размеров – и разница в размерах определила их возможности. Большие бактерии стали глотать и переваривать остальные, в то время как те отравляли и убивали тех, кто был большим и неосторожным. По любой из этих двух причин, доказывала Маргулис, большая бактерия в один прекрасный день когда-то проглотила маленькую, и произошло нечто странное: не произошло ничего. Или маленькая бактерия смогла избежать переваривания, или ее хозяин сдержал свои внутренние процессы. Противостояние продолжилось, и хотя каждая из них продолжала бороться, никому не удавалось покончить с соперником. И через много поколений эта первоначально беспринципная жестокая схватка перетекла в кооперативное сотрудничество. Маленький микроб постепенно научился хорошо синтезировать высококачественное топливо из кислорода, а большая клетка постепенно утратила свои способности накапливать силу и вместо этого стала специализироваться на обеспечении своих элементов питательными веществами и пристанищем. Словом, все по Адаму Смиту: разделение труда принесло пользу каждой из сторон, и вскоре ни одна из них уже не могла отказаться от партнера и при этом выжить. Микроскопические проглоченные бактерии мы сейчас называем митохондриями.

Теория в целом недурна – но и только. К сожалению, когда Маргулис проповедовала ее, она не нашла понимания среди коллег-ученых. Ее первую статью по эндосимбиозу отвергло пятнадцать журналов, и хуже того – многие биологи в открытую нападали на ее гипотезу. И с каждым новым выступлением ее оппоненты выдвигали все больше доказательств и были более нетерпимы, придавая особое значение независимому поведению митохондрий, подчеркивая, что они плавают внутри клетки, размножаются по собственному расписанию, имеют собственные мембраны, напоминающие клеточную стенку. И их «мусорная» ДНК – якобы неизбежный случай: клетки редко позволяют ДНК уходить из ядра на периферию, и если такое случается, то ДНК, как правило, не выживает. Кроме того, мы наследуем митохондриальную ДНК иначе, чем хромосомную, – только от матерей, так как мама передает своим детям все свои митохондрии. Маргулис пришла к выводу, что митохондриальная ДНК может происходить только из ранее независимых клеток.

Ее оппоненты возражали (и правильно делали), что митохондрии не работают поодиночке: для нормального функционирования

им необходимы хромосомные гены, поэтому их вряд ли можно считать независимыми. Маргулис парировала, что три миллиарда лет назад многие гены, необходимые для независимой жизни, вполне могли исчезнуть, как Чеширский Кот, от которого осталась одна лишь улыбка – митохондриальный геном. Оппоненты этому не поверили – в первую очередь из-за недостатка доказательств, но в отличие, например, от Мишера, который практически не имел оснований для своей защиты, Маргулис и не думала сдаваться. Она продвигала свою теорию в лекциях и письменных трудах и восхищалась, наблюдая удивление аудитории. Однажды она начала беседу с вопроса: «Есть ли здесь профессионалы-биологи? К примеру, молекулярные биологи?» Затем посчитала поднятые руки и засмеялась: «Отлично. Вы сейчас будете негодовать».

И биологи негодовали при упоминании эндосимбиоза, и перебранки продолжались и продолжались, пока новые технологии сканирования в 1980-х годах не доказали, что митохондрии хранят свою ДНК не в длинных продолговатых хромосомах, как животные и растения, а в кольцах – как бактерии. Тридцать семь плотно упакованных в обруч генов участвовали в производстве белков (таких же, как у бактерий), и последовательность А-Ц-Г-Т выглядела удивительно похожей на аналогичную последовательность у бактерий. Работая над этим доказательством, ученые даже идентифицировали живущих родственников митохондрии, среди которых оказалась тифозная бактерия. Аналогичная работа установила, что хлоропласты – зеленоватые пятнышки, управляющие фотосинтезом внутри растительных клеток, также содержат петли ДНК. Как и в случае с митохондриями, Маргулис предположила, что хлоропласты зародились, когда большие бактерии заглотили фотосинтезирующую тину, а потом образовалось нечто вроде стокгольмского синдрома. Двух независимых случаев эндосимбиоза было уже слишком много, чтобы оппоненты отделались своими прошлыми объяснениями. Маргулис торжествовала: она оказалась права.

В дополнение к расшифровке митохондрий теория Маргулис помогла разгадать страшную тайну о жизни на Земле: почему после многообещающего начала эволюция была близка к исчезновению? Без толчка со стороны митохондрий примитивная жизнь могла бы так никогда и не развиться до высших форм, не говоря уже о появлении разумных людей.

Чтобы увидеть, насколько существенным было эволюционное торможение, стоит осознать, насколько легко Вселенная производит жизнь. Первые органические молекулы на Земле, возможно, появились спонтанно, у вулканических жерл на дне океана. Тепловая энергия может переплавить простые молекулы, богатые углеродом, в сложные аминокислоты и даже пузырьки, которые используются в качестве примитивных мембран. Кроме того, Земля, вероятно, импортировала органические вещества из космоса. Астрономы открыли изолированные аминокислоты, плавающие в пылевых облаках межзвездного пространства, а химики подсчитали, что ДНК-основания (к примеру, аденин) могут сформироваться и в космосе, так как аденин не содержит ничего, кроме пяти простых молекул HCN (да-да, цианида!), свернутых в двойное кольцо. Основания ДНК могли сохранить и состоящие изо льда кометы. По мере образования лед становится очень нетерпимым к посторонним примесям и сжимает все органические вещества внутри себя в концентрированные пузырьки. В этих пузырьках под давлением образовывается «кисель», внутри которого создание сложных молекул видится весьма вероятным. Ученые уже подозревают, что на заре существования нашей планеты ее океан подвергся бомбардировке комет, которые и посеяли в его воды «био-биты».

Из этого кипящего органического бульона в течение всего лишь миллиарда лет (если вдуматься, это довольно быстро) образовались автономные микроорганизмы со сложными мембранами и сменными движущимися частями. И вот от этого общего начала в кратчайшие сроки появилось много различных видов, которым требовались различные средства пропитания и которые изобретали мудреные способы выживания. Однако после этого чуда эволюция остановилась. На планете было много по-настоящему живых существ, но эти микробы практически не развивались в течение примерно миллиарда лет – а могли и вовсе не развиться.

Что же почти погубило их? Потребление энергии. Примитивные микроорганизмы тратят 2 % всей своей энергии на копирование и поддержание ДНК, но целых 75 % уходит на производство белков из ДНК. Так что даже если микроб развивает ДНК для того, чтобы сформировать выигрышную эволюционную черту (например, закрытое ядро, или «пузо» для переваривания других микробов, или аппарат для коммуникации с себе подобными), на практике производство новой черты очень сильно ослабляет организм. О добавлении сразу двух новых черт не может идти и речи. В подобных обстоятельствах эволюция бесполезна; клетки не могут стать более сложными. Достающаяся почти даром митохондриальная энергия расширила эти рамки. Митохондрия, как и, например, молния, накапливает столько энергии, сколько ей позволяет размер, а подвижность митохондрий позволяет их владельцам одновременно накапливать много новых свойств и развиваться до многоклеточных организмов. На самом деле митохондрии позволяют клеткам расширить свой запас ДНК в 200 тысяч раз, не только изобретать новые гены, но и в больших количествах добавлять регуляторную ДНК, делая клетки гораздо более податливыми для использования генов. Этого могло никогда не произойти с митохондриями, и мы могли бы никогда не пролить свет на эти темные времена в эволюции, если бы не теория Маргулис.

Поделиться:
Популярные книги

Земная жена на экспорт

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Земная жена на экспорт

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Жаба с кошельком

Донцова Дарья
19. Любительница частного сыска Даша Васильева
Детективы:
иронические детективы
8.26
рейтинг книги
Жаба с кошельком

Трудовые будни барышни-попаданки 3

Дэвлин Джейд
3. Барышня-попаданка
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Трудовые будни барышни-попаданки 3

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

(Бес) Предел

Юнина Наталья
Любовные романы:
современные любовные романы
6.75
рейтинг книги
(Бес) Предел

Имперский Курьер. Том 3

Бо Вова
3. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 3

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5

Черный маг императора 3

Герда Александр
3. Черный маг императора
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора 3

Младший сын князя

Ткачев Андрей Сергеевич
1. Аналитик
Фантастика:
фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Младший сын князя

Локки 4 Потомок бога

Решетов Евгений Валерьевич
4. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Локки 4 Потомок бога

Блуждающие огни 4

Панченко Андрей Алексеевич
4. Блуждающие огни
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Блуждающие огни 4

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая