Чтение онлайн

на главную - закладки

Жанры

Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной
Шрифт:

Какой еще выход мог бы прийти в голову нашему инженеру? Когда разработчики радара времен Второй мировой столкнулись с этой проблемой, решение, на которое они натолкнулись, было названо ими “радаром с автоматизированной передачей и приемом”. Этот радар посылал достаточно мощные импульсы, которые вполне могли бы повредить высокочувствительные антенны, ожидающие слабых отраженных сигналов. Но схема “автоматизированной передачи и приема” временно отключала принимающую антенну непосредственно перед испусканием сигнала, а затем снова включала ее — так, чтобы она успела уловить эхо.

Рукокрылые отладили технологию “автоматизированной передачи и приема” давным-давно — вероятно, за миллионы лет до того, как наши с вами предки спустились с деревьев. А работает она так. В ушах у летучих мышей, так же как и у нас, звук передается от барабанной перепонки к сенсорным “клеткам-микрофонам” по мостику из трех миниатюрных косточек, названия которых соответствуют их форме и переводятся с латыни как “молоточек”, “наковальня” и “стремечко”. Надо сказать, что соединение и расположение этих трех косточек в точности таково, каким бы

сделал его звуковой инженер, чтобы решить проблему согласования сопротивлений, но это другая история. Сейчас нам важно то, что у некоторых летучих мышей к стремечку и к молоточку подведены хорошо развитые мускулы. Когда они сокращаются, эффективность передачи звука через косточки падает — как если бы вы заглушили микрофон, пальцем придавив вибрирующую диафрагму. При помощи этих мышц рукокрылые способны временно выключать свои уши. Каждый раз непосредственно перед тем, как произвести исходящий звуковой импульс, летучая мышь сокращает эти мускулы, отключая таким образом уши и защищая их от повреждения громким сигналом. Затем мускулы расслабляются, и уши возвращаются в режим максимальной чувствительности — как раз вовремя, чтобы уловить вернувшееся эхо. Такая система переключения передачи и приема имеет смысл, только если координация во времени выверена с точностью до мгновения. Летучая мышь Tadarida способна поочередно сократить и расслабить эти мышцы-выключатели 50 раз в секунду, сохраняя абсолютную синхронность с пулеметными очередями исходящих ультразвуковых импульсов. Это чудо слаженности сравнимо с хитроумным изобретением, использовавшимся на некоторых истребителях в Первую мировую войну. Их пулеметы стреляли “сквозь” пропеллер — частота выстрелов была так тщательно скоординирована с его вращением, что пули неизменно пролетали между лопастями, не задевая их.

Затем наш инженер мог бы задуматься о следующей проблеме. Раз принцип работы сонара основан на измерении продолжительности паузы между звуком и его эхом — прием, которым, очевидно, пользуется Rousettus, — то издаваемым звукам следовало бы, по всей вероятности, быть отрывистыми, стаккато. Долгий, протяжный звук может не успеть закончиться к моменту возвращения эха и, даже будучи отчасти приглушен мускулами автоматического переключения передачи и приема, помешать восприятию. Действительно, может показаться, что в идеале импульсы рукокрылых должны быть чрезвычайно короткими. Однако чем короче звук, тем сложнее сделать его достаточно мощным, чтобы произвести хоть сколько-нибудь приемлемое эхо. Похоже, законы физики ставят нас перед необходимостью еще одного неприятного компромисса. Искусным инженерам тут могли бы прийти в голову два решения, и они действительно пришли им в голову при встрече с аналогичной проблемой — только опять-таки это было в ходе разработки радара. Какое из данных двух решений предпочтительнее, зависит от того, что важнее измерить: дальность (на каком расстоянии от прибора находится объект) или скорость (насколько быстро объект перемещается относительно прибора). Первое решение известно специалистам по радиолокации как “чирплет-радар”.

Сигналы радара можно представить как серию импульсов, однако каждый импульс характеризуется так называемой несущей частотой, которая аналогична “высоте” звука или ультразвука. Как мы знаем, крики летучих мышей повторяются с периодичностью, равной десяткам или сотням в секунду. Несущая частота каждого из этих импульсов измеряется десятками и сотнями тысяч повторяющихся циклов в секунду. Другими словами, каждый импульс — это высокий, пронзительный визг. Точно так же и каждый сигнал радара представляет собой “визг” радиоволн, отличающийся высокой несущей частотой. Особенностью чирплет-радара является то, что на протяжении каждого его “взвизгивания” несущая частота не является неизменной, а “взмывает” или “сползает” приблизительно на октаву. Если вам нужен эквивалентный звуковой образ, то представьте себе, что во время каждого импульса радар как бы присвистывает от удивления. Преимущество чирплет-радара перед радаром с фиксированной высотой импульсов состоит в следующем. Неважно, закончился исходящий “присвист” к моменту возвращения своего эха или еще нет. Их все равно не перепутаешь. Ведь эхо, улавливаемое в каждый конкретный момент времени, будет отражением более ранней части сигнала и потому иметь отличную от него частоту.

Разработчики человеческого радара извлекли немалую пользу из этой остроумной методики. А есть ли доказательства в пользу того, что летучие мыши тоже ее “открыли”, как это было с автоматизированной передачей и приемом? Ну, вообще-то многие виды рукокрылых действительно издают крики, высота которых постепенно снижается примерно на октаву. Такие “присвистывающие” сигналы называются частотно-модулированными (frequency modulated, FM). Казалось бы, это именно то, что нужно, чтобы воспользоваться принципом чирплет-радара. Тем не менее имеющиеся на сегодняшний день факты говорят о том, что летучие мыши используют этот метод не для того, чтобы отличать эхо от исходного сигнала, а для более тонкой задачи — чтобы отличать одно эхо от другого. Летучая мышь живет в мире эха, которое доносится от близких объектов, дальних объектов и от объектов, находящихся на всевозможных промежуточных расстояниях. Все эти звуковые отражения ей необходимо рассортировать. Если издавать плавно понижающиеся “присвистывания”, то можно провести четкую сортировку по высоте. Эхо, вернувшееся наконец от удаленного объекта, будет “старше”, чем эхо, которое в тот же момент пришло от объекта, расположенного поблизости. А значит, высота первого эха будет больше. Услышав несколько отраженных сигналов сразу, летучая мышь может положиться на простое практическое правило: чем звук выше, тем объект

дальше.

Вторая идея, которая могла бы прийти в голову умному инженеру, особенно если он заинтересован в определении скорости движущейся мишени, — это сыграть на явлении, которое физики называют допплеровским смещением. Также его можно было бы назвать “эффектом скорой помощи”, поскольку наиболее известный его пример — это резкое падение высоты звука сирены у машины скорой помощи, после того как она промчится мимо нас. Допплеровское смещение наблюдается во всех случаях, когда источник звука (или света, или любых других волн) и его получатель движутся друг относительно друга. Для большей простоты представим себе, что источник звука неподвижен, а слушатель перемещается. Допустим, фабричная сирена непрерывно гудит на одной ноте. Звук распространяется вовне в виде идущих одна за другой волн. Эти волны невидимы, они из уплотненного воздуха. Но если бы их можно было увидеть, то они были бы похожи на концентрические окружности, расходящиеся по поверхности спокойного пруда от брошенных камешков. Представьте, что мы бросаем туда камешек за камешком, так что волны образуются непрерывно. Если в какой-нибудь точке этого пруда поставить на якорь игрушечную лодочку, то она будет ритмично подниматься и опускаться по мере прохождения под ней волн. Частота покачиваний лодочки аналогична высоте звука. Теперь давайте вообразим, что вместо того, чтобы стоять на якоре, наша лодочка плывет через пруд по направлению к центру, где возникают расходящиеся волны-окружности. Она по-прежнему будет покачиваться вверх-вниз, встречаясь с идущими друг за другом волнами. Но теперь, направляясь к источнику волн, она будет сталкиваться с ними чаще. Частота ее покачиваний будет выше. Когда же она минует источник волн и направится к противоположному берегу, частота, с которой она покачивается, очевидным образом уменьшится.

По тем же причинам, если мы будем мчаться на мотоцикле (желательно бесшумном) мимо гудящей фабричной сирены, то, пока мы приближаемся к фабрике, звук будет завышенным — фактически наши уши будет “накрывать” звуковой волной чаще, чем если бы мы просто сидели на одном месте. Из этих же рассуждений следует, что, когда наш мотоцикл проедет мимо фабрики и начнет от нее удаляться, высота звука понизится. Если мы остановимся, то услышим сигнал такой высоты, какая она есть на самом деле, — промежуточная между двумя значениями с допплеровским сдвигом частоты. Получается, что, зная точную высоту тона сирены, теоретически возможно вычислить, с какой скоростью мы движемся по направлению к ней или от нее. Для этого надо просто сравнить слышимую высоту звука с ее известным нам “настоящим” значением.

Этот принцип точно так же действует, когда источник звука перемещается, а слушатель неподвижен. Потому мы и можем наблюдать его в случае со скорой помощью. Ходят довольно неправдоподобные россказни, будто бы сам Кристиан Допплер, чтобы продемонстрировать свое открытие, нанял духовой оркестр, который играл на открытой грузовой платформе, несущейся по рельсам мимо изумленной публики. Что действительно важно, так это относительное движение, и, покуда речь идет о допплеровском эффекте, нам все равно — источник звука перемещается мимо уха или ухо мимо источника звука. Если два поезда едут в противоположных направлениях со скоростью 125 миль в час каждый, то для пассажира, находящегося в одном из них, свисток другого поезда должен резко понизить высоту в результате особенно значительного допплеровского смещения, поскольку относительная скорость будет составлять целых 250 миль в час.

Эффект Допплера используется и в полицейских портативных радарах — “ловушках для лихачей”. Неподвижно установленный прибор посылает радиолокационные сигналы вдоль дороги. Радиоволны отскакивают назад от приближающихся автомобилей и регистрируются приемным устройством. Чем быстрее движется машина, тем сильнее допплеровский сдвиг частоты. Сравнивая исходящую частоту с частотой возвращающегося эха, полицейские, а точнее их автоматизированная аппаратура, могут вычислить скорость каждой машины. Раз полиция освоила эту методику для ловли дорожных нарушителей, то можем ли мы надеяться, что и рукокрылые пользуются ею для измерения скорости насекомых, на которых охотятся?

Ответ будет — да. Давно известно, что мелкие летучие мыши, называемые подковоносами, издают не отрывистые щелчки и не нисходящие глиссандо, а продолжительные монотонные возгласы. Говоря “продолжительные”, я имею в виду — продолжительные по меркам рукокрылых. Эти “возгласы” все равно длятся менее десятой доли секунды. И, как мы дальше увидим, нередко в конце каждого возгласа к нему добавляется еще и нисходящее “присвистывание”. Но для начала просто представьте себе, как подковонос, непрерывно издавая ультразвуковой шум, на высокой скорости приближается к неподвижному объекту — скажем, к дереву. В связи с таким направлением движения летучей мыши звуковые волны ударяются о дерево с повышенной частотой. Если бы в дереве был спрятан микрофон, то по той причине, что животное приближается, он бы “слышал” звук с допплеровским завышением тона. В дереве нет микрофона, но точно таким же образом будет завышен тон у отражающегося от дерева эха. Итак, поскольку волны эха струятся от дерева обратно, то получается, что летучая мышь летит им навстречу. Следовательно, при восприятии летучей мышью высоты звучания эха происходит еще один допплеровский сдвиг в сторону завышения. Перемещение летучей мыши приводит к своего рода двойному допплеровскому эффекту, величина которого является точным показателем скорости движения животного относительно дерева. Сравнив высоту своего крика с высотой возвращающегося эха, летучая мышь (а точнее, встроенный в ее мозг “бортовой компьютер”) имела бы теоретическую возможность вычислить, насколько быстро она приближается к дереву. Пусть это ничего не сказало бы ей о том, как далеко от нее это дерево находится, тем не менее полученная информация сама по себе была бы очень ценной.

Поделиться:
Популярные книги

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Барон Дубов

Карелин Сергей Витальевич
1. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов

Наука и проклятия

Орлова Анна
Фантастика:
детективная фантастика
5.00
рейтинг книги
Наука и проклятия

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Ваше Сиятельство 10

Моури Эрли
10. Ваше Сиятельство
Фантастика:
боевая фантастика
технофэнтези
фэнтези
эпическая фантастика
5.00
рейтинг книги
Ваше Сиятельство 10

Служанка. Второй шанс для дракона

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Служанка. Второй шанс для дракона

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

О, Путник!

Арбеков Александр Анатольевич
1. Квинтет. Миры
Фантастика:
социально-философская фантастика
5.00
рейтинг книги
О, Путник!

Солнце мертвых

Атеев Алексей Григорьевич
Фантастика:
ужасы и мистика
9.31
рейтинг книги
Солнце мертвых

Зайти и выйти

Суконкин Алексей
Проза:
военная проза
5.00
рейтинг книги
Зайти и выйти

Часограмма

Щерба Наталья Васильевна
5. Часодеи
Детские:
детская фантастика
9.43
рейтинг книги
Часограмма

Избранное. Компиляция. Книги 1-11

Пулман Филип
Фантастика:
фэнтези
героическая фантастика
5.00
рейтинг книги
Избранное. Компиляция. Книги 1-11

Надуй щеки!

Вишневский Сергей Викторович
1. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки!

Крутой маршрут

Гинзбург Евгения
Документальная литература:
биографии и мемуары
8.12
рейтинг книги
Крутой маршрут