Сочинения в двух томах. Том 1
Шрифт:
Эти два пути являются самыми верными путями к знанию, и ум не должен допускать их больше — все другие надо отвергать, как подозрительные и ведущие к заблуждениям; однако это не мешает нам поверить, что те вещи, которые были открыты по наитию, более достоверны, чем любое познание, поскольку вера в них, как и всякая вера в загадочные вещи, является действием не ума, а воли, и, если бы она имела основания в разуме, их прежде всего можно и нужно было бы отыскивать тем или другим из уже названных путей, как мы, быть может, когда-нибудь покажем более обстоятельно.
Правило IV
Для разыскания истины вещей необходим метод.
Смертными владеет любопытство настолько слепое, что часто они ведут свои умы по неизведанным путям без всякого основания для надежды, но только для того, чтобы проверить, не лежит ли там то, чего они ищут; как если бы кто загорелся настолько безрассудным желанием найти сокровище, что беспрерывно бродил бы по дорогам, высматривая, не найдет ли он случайно какое-нибудь сокровище, потерянное путником. Точно так же упражняются почти все химики, большинство геометров и немало философов; я, правда, не отрицаю, что они иногда блуждают до такой степени удачно, что находят нечто истинное, однако я признаю по этой причине не то, что они более усердны, а лишь то, что они более удачливы. Но гораздо лучше никогда не думать об отыскании истины какой бы то ни было вещи, чем делать это без метода: ведь совершенно несомненно, что вследствие беспорядочных
Здесь же следует отметить два пункта: не принимать безусловно ничего ложного за истинное и достигать познания всех вещей, ибо если мы не знаем какую-либо вещь из тех, которые мы можем знать, то лишь потому, что мы никогда не замечали никакого пути, который вел бы нас к такому познанию, или потому, что мы впали в противоположное заблуждение. Но если метод правильно объясняет, каким образом следует пользоваться интуицией ума, чтобы не впасть в заблуждение, противное истине, и каким образом следует отыскивать дедуктивные выводы, чтобы прийти к познанию всех вещей, то, мне кажется, для того чтобы он был совершенным, не нужно ничего другого, поскольку невозможно приобрести никакого знания, кроме как посредством интуиции ума или дедукции, как уже было сказано раньше. Ведь он не может простираться и до того, чтобы указывать, каким образом следует совершать эти действия, ибо они являются первичными и самыми простыми из всех, так что, если бы наш разум не мог пользоваться ими уже раньше, он не воспринял бы никаких предписаний самого метода, сколь бы легки они ни были. Другие же действия ума, которыми диалектика силится управлять с помощью этих двух первых, здесь бесполезны, или, скорее, их нужно отнести к числу препятствий, так как невозможно прибавить к чистому свету разума ничего, что бы некоторым образом его не помрачило.
Поскольку же польза от этого метода столь велика, что предаваться без него наукам, кажется, скорее вредно, чем полезно, я легко убеждаюсь в том, что он был некоторым образом постигнут уже прежде более сильными умами, хотя бы под руководством одной лишь природы. Ведь человеческий ум заключает в себе нечто божественное, в чем были посеяны первые семена полезных мыслей, так что часто, как бы они ни были попираемы и стесняемы противными им занятиями, они все-таки производят плод, вызревающий сам собой. Это мы замечаем в самых легких из наук — арифметике и геометрии; в самом деле, для нас достаточно ясно, что древние геометры применяли некий анализ, который они распространяли на решение всевозможных проблем, хотя и ревниво утаили его от потомков. И теперь процветает некий род арифметики, называемый алгеброй, который осуществляет в отношении чисел то, что древние делали в отношении фигур. Однако эти две науки являются не чем иным, как появившимися сами собой плодами, вызревшими из врожденных начал данного метода, и я не удивляюсь, что применительно к простейшим предметам этих наук они до сих пор развивались более успешно, чем в остальных науках, где их обычно стесняют большие препятствия, но все-таки и там, если их пестовать с величайшей заботливостью, они, без сомнения, смогут достичь полной зрелости.
Это я главным образом и задумал сделать в данном трактате: ведь я не ценил бы высоко эти правила, если бы они были достаточны только для разрешения тех пустых проблем, которыми привыкли развлекаться досужие счетчики или геометры, ибо я в этом случае полагал бы, что я выделился не чем иным, как тем, что забавлялся пустяками, быть может, более искусно, нежели другие. И хотя здесь я буду много говорить о фигурах и числах, поскольку ни из каких других дисциплин не могут быть почерпнуты примеры столь же очевидные и столь же достоверные, тем не менее всякий, кто будет внимательно следить за моей мыслью, легко заметит, что ни о чем я не думаю здесь так мало, как об общепринятой математике, но излагаю некую другую дисциплину, такую, что упомянутые науки являются скорее ее покровом, нежели частями. Ведь эта наука должна содержать в себе первые начала человеческого рассудка и достигать того, чтобы извлекать истины из какого угодно предмета; и, если говорить откровенно, я убежден, что она превосходит любое другое знание, переданное нам людьми, так как она служит источником всех других знаний. О покрове же я сказал не потому, что хотел бы укрыть и укутать эту науку, чтобы уберечь ее от толпы, но скорее потому, что хотел бы принарядить и украсить ее так, чтобы она могла быть более приемлемой для человеческого ума.
Когда я впервые направил ум на математические дисциплины, я сразу же перечитал большую часть из того, что обычно передается от авторитетов в этих науках; в особенности я чтил арифметику и геометрию, поскольку, как было сказано, это простейшие из наук, являющиеся как бы путями к остальным. Но ни в той, ни в другой мне тогда, пожалуй, не попались в руки авторы, которые бы меня вполне удовлетворили. Конечно же очень многое из того, что я прочитал у этих авторов касательно чисел, было истинным, как я, проведя расчеты, убедился на опыте; касательно же фигур многое они определенным образом представляли моим глазам и выводили на основании некоторых заключений, но почему это обстояло именно так и каким образом было обнаружено, сами они, по-видимому, не показывали уму достаточно хорошо. Поэтому я не был удивлен, что даже многие из даровитых и образованных людей, испробовав эти науки, или быстро бросали их, как ребяческие и пустые, или, напротив, у самого порога отвращались от изучения тех же самых наук, как крайне трудных и запутанных. И действительно, нет ничего более бессмысленного, чем заниматься голыми числами и воображаемыми фигурами, так что может показаться, будто мы желаем найти успокоение в познании подобных пустяков, и потом настолько предаться тем поверхностным доказательствам, которые обнаруживаются чаще благодаря случаю, чем искусству, и относятся больше к зрению и воображению, чем к разуму, что мы некоторым образом отучимся пользоваться самим рассудком. В то же время нет ничего более сбивающего с толку, нежели посредством такого способа доказательства освобождаться от новых трудностей, скрытых в путанице чисел. Когда же потом я подумал, откуда же повелось, что некогда первые создатели философии не хотели допускать к изучению мудрости кого-либо несведущего в математике, как будто эта дисциплина казалась им самой легкой из всех и совершенно необходимой для того, чтобы просветить и подготовить умы к освоению других, более возвышенных наук, я вполне утвердился в подозрении, что они знали некую математику, весьма отличную от общепринятой математики нашего времени. Не то чтобы я считал, что они знали эту самую науку в совершенстве, ведь их безумные ликования и жертвы, приносимые в благодарность за незначительные открытия, ясно показывают, насколько они были безыскусны. И меня не заставят отказаться от моего мнения некоторые их механизмы, которые восхваляются у историков, ибо, хотя эти механизмы, вероятно, были весьма просты, их легко можно было превозносить, вплоть до признания их чудесами, невежественной и склонной к изумлению толпе. Но я убежден, что какие-то первые семена истин, которые присущи
Но, сознавая свою слабость, я решил в поисках знания о вещах твердо придерживаться такого порядка, чтобы, всегда начиная с самых простых и легких вещей, никогда не переходить к другим до тех пор, пока мне не покажется, что в самих этих вещах не осталось более ничего из того, к чему следует стремиться. Вот почему, насколько было в моих силах, я до сих пор разрабатывал эту всеобщую математику так, чтобы потом я мог считать себя способным изучать несколько более возвышенные науки с усердием, отнюдь не преждевременным. Однако, прежде чем отойти от этого, я попытаюсь собрать воедино и расположить по порядку все то, что я нашел весьма достойным внимания в предшествующих занятиях, как для того, чтобы впредь, когда с возрастом ослабеет память, я без труда мог, если потребует необходимость, восстановить это по своей книжке, так и для того, чтобы отныне, освободив память от этих вещей, я мог обратить более свободный ум к другому.
Правило V
Весь метод состоит в порядке и расположении тех вещей, на которые надо обратить взор ума, чтобы найти какую-либо истину. Мы будем строго придерживаться его, если шаг за шагом сведем запутанные и темные положения к более простым, а затем попытаемся, исходя из усмотрения самых простых, подняться по тем же ступеням к познанию всех прочих.
В одном этом заключается итог всего человеческого усердия, и для желающего приступить к познанию вещей следование данному правилу не менее необходимо, чем нить для Тесея, желающего проникнуть в лабиринт. Однако многие или не размышляют над тем, что оно предписывает, или вовсе не знают его, или предполагают, что в нем нет нужды, и часто исследуют труднейшие вопросы настолько беспорядочно, что кажутся мне поступающими точно так же, как если бы они попытались одним прыжком преодолеть расстояние от самой нижней части до верха какого-то здания, пренебрегая ступенями лестницы, предназначенными для этой цели, или не замечая их. Так поступают все астрологи, которые, не зная природы небес и даже не понаблюдав как следует за их движениями, надеются, что они смогут определить их воздействия. Так ведет себя большинство тех людей, которые изучают механику отдельно от физики и наугад изготовляют новые орудия, приводящие в движение. Таким же образом поступают и те философы, которые, пренебрегая опытами, думают, что истина выйдет из их собственного мозга, словно Минерва из головы Юпитера.
И все они очевидно грешат против этого правила. Но так как зачастую порядок, который здесь требуется, является настолько темным и запутанным, что не все будут в состоянии узнать, каков же он, то вряд ли кто-либо сможет достаточно хорошо оградить себя от заблуждения, если он не будет тщательно соблюдать то, что излагается в следующем правиле.
Правило VI
Для того чтобы отделять самые простые вещи от запутанных и исследовать их по порядку, необходимо в каждом ряде вещей, в котором мы прямо вывели некоторые истины из других, усматривать, что в нем является наиболее простым и насколько удалено от этого все остальное — более, или менее, или одинаково.
Хотя и кажется, что это положение не научает ничему особо новому, оно тем не менее содержит главный секрет искусства, и во всем данном трактате нет положения более полезного: ведь оно указывает, что все вещи могут быть выстроены в некие ряды, хотя и не постольку, поскольку они относятся к какому-либо роду сущего, подобно тому как философы распределили их по своим категориям, но поскольку одни из них могут быть познаны на основании других так, что всякий раз, когда возникнет какое-либо затруднение, мы сможем тотчас узнать, не будет ли полезным сначала обозреть некоторые другие вещи, и какие именно, и в каком порядке.