Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Шары-зонды поднимаются на высоту 30–40 км, где спектральное распределение энергии солнечного излучения определяется практически только полосами поглощения озона и в очень небольшой степени аэрозольным рассеянием. Влияние озона и аэрозолей учитывается введением поправки.

Самолеты для научных исследований обычно поднимаются на 12–13 км. Ориентация эталонных солнечных элементов на Солнце осуществляется летчиком с помощью оптического прицела. Измерения начинаются при подъеме на 3–4 км. Параметры солнечного излучения зависят от высоты полета самолета над уровнем моря и от положения Солнца над горизонтом в момент измерений, т. е. от оптической массы атмосферы. Проводились измерения на научном самолете при значениях абсолютной атмосферной массы от 1,4 до 0,14. Значение тока для внеатмосферных условий определялось экстраполяцией результатов к нулевой атмосферной массе. Это значение можно получить таким же образом по данным измерений в наземных, желательно высокогорных

условиях.

Метод, который наиболее часто используется при градуировке под естественным солнечным излучением на поверхности Земли (как правило, в высокогорных условиях), заключается в эктраполяции результатов измерений к нулевой атмосферной массе. При градуировке последовательно измеряют ток короткого замыкания эталонных солнечных элементов для различных значений атмосферной массы (разная высота Солнца). Поскольку работа проводится в стационарных условиях, достаточно знать зависимость тока короткого замыкания эталонов от относительных значений атмосферной массы. Внеатмосферное значение тока короткого замыкания солнечных элементов получают путем линейной экстраполяции зависимости логарифма тока от относительной атмосферной массы к ее нулевому значению.

Практически метод осуществляется путем измерения тока короткого замыкания эталонных элементов в течение половины солнечного дня. Логарифмы измеренных значений тока наносятся на график в функции атмосферной массы, через экспериментальные точки проводится прямая линия (так называемая прямая Бугера), которая линейно экстраполируется к значению тока при нулевой атмосферной массе. Строго говоря, зависимость логарифма тока короткого замыкания от атмосферной массы оказывается линейной только для монохроматического света. Кремниевые солнечные элементы чувствительны в достаточно широкой области спектра, и вследствие эффекта Форбса для них эта функция изображается слабо вогнутой кривой. Однако при градуировке экстраполяцию проводят линейно, a затем вносят поправку на эффект Форбса. Для вычисления поправки (значение которой находится в пределах 1–3 %) необходимо знать спектральное распределение коэффициента прозрачности атмосферы в течение всего периода градуировки эталонных элементов, когда производятся измерения тока короткого замыкания эталонных солнечных элементов в зависимости от высоты Солнца над горизонтом.

Эти измерения проводят в сухих горных районах, где выше прозрачность атмосферы и для которых в определенные периоды года характерна устойчивость оптических свойств атмосферы. Для контроля стабильности оптических свойств атмосферы одновременно с измерениями ведут наблюдения за солнечным ореолом.

В СССР градуировка эталонных солнечных элементов осуществляется с 1965 г. регулярно один-три раза в год в окрестностях Алма-Аты на высокогорной станции Государственного астрономического института им. П. К. Штернберга (43° с. ш., 77° в. д., 3040 м над уровнем моря), сотрудниками которого во главе с Э. В. Koноновичем создана программа расчета тока I? 3 эталонов на ЭВМ и оборудован солнечный телескоп для этих измерений. Во Всесоюзном научно-исследовательском институте источников тока В. Я. Ковальским и И. С. Оршанским с сотрудниками были разработаны аппаратура и методика проведения высокогорной градуировки.

Пример определения IAM0 рассмотренным методом для двух эталонных элементов приведен на рис. 3.2.

Рис. 3.2. Экспериментальные зависимости логарифма тока короткого замыкания эталонных солнечных элементов от значения воздушной массы, построенные по результатам высокогорных измерений в районе Алма-Аты 26 июня 1982 г.

1 — кремниевый элемент; 2 — элемент на основе гетероперехода AlGaAs — GaAs

Если значения относительной воздушной массы, полученные во время измерений в высокогорных условиях, перевести в абсолютные величины, то зависимость логарифма тока короткого замыкания от абсолютной воздушной массы дает возможность определить ток короткого замыкания эталонных солнечных элементов не только для условий AM0, но и для AM1, AM1,5 и АМ2, а также для больших значений воздушной массы.

Однако при градуировке эталонов на согласованном в международном масштабе спектре требуется соответствие ему спектра наземного солнечного излучения, использованного при измерениях, не только по значению воздушной массы, но и по остальным параметрам: плотности потока излучения, коэффициенту мутности и селективности, количеству осажденных паров воды и озона. Сравнение спектра солнечного излучения, измеренного в день проведения испытаний в высокогорных условиях, со стандартным

позволяет внести необходимую поправку в значение тока эталонов, определенное по зависимости, подобной показанной на рис. 3.2, для любых значений абсолютной воздушной массы. Тем самым удается на основании результатов высокогорных измерений получить достаточно точные градуировочные значения тока эталонных элементов для оценки параметров наземных солнечных элементов. Приведение к стандартному спектру может быть также осуществлено без детального исследования спектра солнечного излучения в определенный день — достаточно знать глубину нескольких характерных полос в спектре, что позволяет оценить содержание водяных паров, озона и аэрозолей в этот день.

Как правило, результаты градуировки эталонных солнечных элементов несколькими методами сравниваются между собой и показывают достаточно хорошее совпадение получаемых значений.

Измерения в наземных, лабораторных

и космических условиях

Наземные параметры солнечных элементов в зависимости от условий измерения изменяются: по мере увеличения воздушной массы, возникновения пасмурности, облачности, дымки, появления капель дождя КПД солнечных элементов, как правило, значительно растет, хотя абсолютное значение генерируемой ими мощности падает. Причину этого явления легко понять из сравнения кривых спектрального распределения энергии солнечного излучения при различных атмосферных массах (см. рис. 3.3): при увеличении значения атмосферной массы от 1 до 5 плотность потока излучения падает, но максимум проходящего сквозь атмосферу излучения сдвигается вправо, приближаясь к максимуму спектральной чувствительности солнечных элементов из кремния и арсенида галлия.

В июне 1982 г. в г. Будапеште на имитаторе наземного солнечного излучения были проведены совместные советско-венгерские измерения вольт-амперных характеристик и КПД солнечных элементов в лабораторных условиях.

Источником света в имитаторе служила ксеноновая лампа высокого давления, спектр которой коррегирован интерференционным фильтром. Настройка имитатора осуществлялась с помощью эталонного солнечного элемента (чувствительная поверхность 30x35 мм), разработанного п отградуированного в СССР. Конструкция эталона, как уже указывалось, предложена в качестве стандартной для стран СЭВ. Градуировка проведена для наземных условий AM1,5 (плотность прямого потока 850 Вт/м2) и для условий AM1 (плотность потока 1000 Вт/м2).

При работе на имитаторе использовался разработанный Институтом электротехнической промышленности ВНР прибор для автоматического измерения и записи вольт-амперной характеристики, в комплект которого входит мини-ЭВМ, что позволяет одновременно определить оптимальные параметры солнечных элементов.

В приборе использован четырехзондовый метод съема тока с отдельной цепью подключения вольтметра, который позволяет значительно точнее по сравнению с двухзондовым (см. рис. 2.8) измерить напряжение на солнечном элементе. Поскольку в цепи вольтметра при четырехзондовой схеме протекает очень малый ток, падение напряжения на сопротивлении перехода между контактом солнечного элемента и токосъемным зондом и на сопротивлении проводов ничтожно, и, следовательно, вольтметр регистрирует напряжение, которое установилось непосредственно на солнечном элементе. Как показали эксперименты, для элементов площадью 5,4 см2 при стандартной плотности потока излучения и I= 160 мА разница в КПД, измеренных двумя способами, не отмечается; при площади 10,5 см2 и I=300 мА КПД по двухзондовой схеме составляет 12,1 вместо 14,1 % по четырехзондовой схеме. Если площадь элемента 24 см2 и ток короткого замыкания 670 мА, разница при измерениях по двум схемам еще больше (КПД 8,1 и 11,3 % соответственно).

В любом варианте электрической схемы по мере увеличения переходного сопротивления контакт солнечного элемента — токосъемный зонд, сопротивления проводов и внутреннего сопротивления амперметра измерения параметров солнечного элемента будут проводиться в области вольт-амперной характеристики, все более удаленной от точки короткого замыкания, и для элементов с высоким последовательным сопротивлением ошибка измерений будет весьма ощутимой.

Для точного определения тока короткого замыкания элементов может быть применена схема с дополнительным источником, позволяющим подавать встречное напряжение. Особенно удобно использовать ее для измерений при повышенных концентрациях солнечного излучения или при исследовании параметров солнечных элементов с большой площадью фоточувствительной поверхности. Такая схема применяется, например, для измерений характеристик блок-элементов (модулей с параллельно соединенными солнечными элементами) большого размера, имеющих высокое значение тока при малых напряжениях.

Поделиться:
Популярные книги

Повелитель механического легиона. Том VI

Лисицин Евгений
6. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VI

Развод с генералом драконов

Солт Елена
Фантастика:
фэнтези
5.00
рейтинг книги
Развод с генералом драконов

Дочь опальной герцогини

Лин Айлин
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дочь опальной герцогини

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

Бастард

Осадчук Алексей Витальевич
1. Последняя жизнь
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.86
рейтинг книги
Бастард

Новые горизонты

Лисина Александра
5. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Новые горизонты

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Личник

Валериев Игорь
3. Ермак
Фантастика:
альтернативная история
6.33
рейтинг книги
Личник

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

Новый Рал

Северный Лис
1. Рал!
Фантастика:
фэнтези
попаданцы
5.70
рейтинг книги
Новый Рал

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Двойник Короля 5

Скабер Артемий
5. Двойник Короля
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Двойник Короля 5

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец