Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Дешевые солнечные элементы из кремния

и автоматизированная технология их получения

Реальная перспектива широкого использования солнечных элементов не только на борту космических аппаратов, но и в наземной солнечной энергетике, в самых разнообразных отраслях промышленности, сельского хозяйства, в автоматических системах управления, а также в быту делает актуальной проблему создания экономичного, полностью автоматизированного производства солнечных элементов из недорогих и тонких полупроводниковых слоев.

Решение этой проблемы усложняется

тем, что длительное время в стремлении получить максимальное значение КПД и оптимальные оптические и электрические параметры разработчики солнечных элементов не стремились к уменьшению их толщины, не старались удешевить, механизировать и автоматизировать производство солнечных элементов или процесс сборки их в батарею и часто использовали для создания элементов и батарей самые разнообразные и разнородные физические и химические процессы и операции. Например:

при изготовлении кремниевых солнечных элементов высокотемпературной диффузии примесей для создания p-n– перехода обычно предшествует химическая очистка поверхности в жидких растворителях и травителях, за впеканием контактов в атмосфере инертных газов следует нанесение просветляющих покрытий испарением в высоком вакууме;

при производстве элементов из арсенида галлия применяются толстые дорогие подложки и трудоемкий процесс жидкостной или газовой эпитаксии для получения слоев твердого раствора алюминия в арсениде галлия, повторяющих совершенную структуру монокристаллической подложки;

в изготовлении тонкопленочных элементов на основе гетеросистемы сульфид меди — сульфид кадмия одновременно участвуют «сухой» (нанесение слоев сульфида кадмия на проводящие подложки) и «мокрый» (образование гетероперехода путем химической реакции в жидкой фазе между поверхностным слоем сульфида кадмия и однохлористой медью) методы.

В то же время очевидно, что успешное решение проблемы автоматизации процесса получения солнечных элементов основано на возможности создания технологии производства, включающей небольшое число однородных операций, а для удешевления изготовления элементов требуется переход ко все более тонким и недорогим слоям и широкому применению полимерных материалов (при сохранении, конечно, оптических и электрических характеристик элементов на достаточно высоком уровне).

В последнее время в этом направлении произошли существенные изменения, и достижения в создании простой технологии дешевых солнечных элементов наземного применения даже начинают использоваться в производстве солнечных батарей космического назначения.

Создается, например, методика получения кремния прямым восстановлением диоксида кремния; освоен способ непрерывного вытягивания лент кремния, позволяющий исключить из процесса производства дорогие и трудоемкие операции резки, шлифовки, химической и механической полировки пластин кремния; методом химической пульверизации получены просветляющие покрытия, контакты и пленки для легирования.

Такая технология может быть названа «химической». В то же время успешно разрабатывается «физическая» технология изготовления солнечных элементов, в которой нанесение просветляющих покрытий, контактов и внедрение легирующей примеси осуществляется ионной бомбардировкой в вакууме, а отжиг образовавшихся при этом дефектов в легированном слое — путем сканирования лазерным или электронным лучом, причем эти операции могут непосредственно следовать одна за другой.

Как правило, новые технологические процессы разрабатываются применительно к кремниевым солнечным элементам. Однако значительные успехи достигнуты и в улучшении

качества и удешевлении солнечных элементов других типов.

Несмотря на заметные успехи на пути удешевления и упрощения технологии создания солнечных элементов, процесс их производства пока еще содержит десятки трудоемких операций. Вероятно, только кардинальное изменение основных этапов получения солнечных элементов позволит в ближайшем будущем полностью автоматизировать процесс их производства. Несколько активно разрабатываемых новых моделей солнечных элементов, возможно, позволят на практике решить эту задачу. Оптические и электрические характеристики таких элементов несколько отличаются (в частности, более высокой чувствительностью в ультрафиолетовой области спектра) от характеристик традиционных солнечных элементов с p-n– переходом в гомогенном и гетерогенном полупроводниковых материалах.

Большинство таких моделей является той или иной модификацией барьера Шоттки — барьера между полупрозрачным слоем металла и полупроводником. Резкий изгиб зон в полупроводнике на границе с металлом создает разделяющий барьер, необходимый для работы солнечного элемента. Роль полупрозрачного металла могут также выполнять полупрозрачные проводящие оксидные пленки из широкозонных полупроводниковых материалов.

Параметры подобных солнечных элементов на основе кремния были постепенно улучшены и путем оптимизации свойств полупрозрачных металлических пленок доведены до уровня, характерного для монокристаллических кремниевых солнечных элементов с p-n– переходом; дорогостоящие металлические слои (серебро, хром, золото) в случае базового слоя из кремния успешно заменены полупрозрачными слоями из недорогого алюминия; резко увеличено напряжение холостого хода и уменьшен обратный ток насыщения в результате введения на границе барьера Шоттки очень тонкой (толщиной 10–20 А) пленки диоксида кремния, выращиваемой предварительно (перед нанесением верхнего полупрозрачного проводящего слоя) на поверхности кремния различными методами: термическим окислением на воздухе или в кислороде при 400oС в течение 20–30 мин, анодным электрохимическим окислением или выдержкой в подогретом до 60–70 °C растворе перекиси водорода в течение 2—15 мин, как сообщается в одной из работ.

Изгиб зон на поверхности полупроводника и разделяющий барьер можно получить также за счет оксидного слоя с сильным встроенным зарядом. Этот инверсионный слой, как, впрочем, и диффузионный легированный слой, может быть использован также для уменьшения скорости поверхностной рекомбинации на освещаемой поверхности; разделение носителей заряда в этом случае осуществляется на р+– и n+– барьерах к базовому слою, расположенных с тыльной стороны элемента, что, кстати, облегчает коммутацию элементов в группы и модули солнечной батареи с помощью печатного монтажа.

Процесс изготовления всех перечисленных моделей солнечных элементов выгодно отличается от высокотемпературной термодиффузии (800–900oC), применяемой для получения p-n– перехода в кремнии, поскольку создание разделяющего барьера требует сравнительно низкой (200–400 °C) температуры. Барьеры Шоттки и МОП- или ПОП-структуры (металл — оксид — полупроводник или полупроводник — оксид — полупроводник) могут быть созданы не только на монокристаллических материалах, но и на поликристаллических и ленточных, а также на пленках из аморфного кремния.

Поделиться:
Популярные книги

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V

Оживший камень

Кас Маркус
1. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Оживший камень

Сирота

Шмаков Алексей Семенович
1. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Сирота

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Неправильный боец РККА Забабашкин 3

Арх Максим
3. Неправильный солдат Забабашкин
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Неправильный боец РККА Забабашкин 3

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

(Не) моя ДНК

Рымарь Диана
6. Сапфировые истории
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
(Не) моя ДНК

Искатель 1

Шиленко Сергей
1. Валинор
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Искатель 1

(Бес) Предел

Юнина Наталья
Любовные романы:
современные любовные романы
6.75
рейтинг книги
(Бес) Предел

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник