Совместная жизнь
Шрифт:
На снимках было видно, что склоны чёрных курильщиков почти до самых вершин покрыты толстым слоем бактерий (сплетения миллиардов бактериальных клеток образуют так называемые маты), способных выживать при температуре до 120 градусов. В отдалении от устья курильщиков, там, где температура опускается ниже 40 градусов, на уступах курильщиков были видны сплетения белых трубок гигантских (до 2,5 м) червей с ярко алыми щупальцами. В зарослях трубок ползали крабы, рядом плавали рыбы, в расселинах сидели крупные (20-30 см) двустворчатые моллюски, попадались осьминоги, словом, жизнь кипела. Красота и богатство сообществ чёрных курильщиков, резко контрастирующие с бедным и однообразным населением ложа океана, так поразили исследователей, что некоторые из гидротермальных оазисов называются в научной литературе весьма поэтично: "Райский сад", "Розовый сад" и т.п.
У вестиментифер (так же как у погонофор) во взрослом состоянии нет рта и кишечника. По оси туловищного
В гидротермальных оазисах сероводород поступает из чёрных курильщиков, а кислород - за счет подсоса холодной и богатой кислородом глубинной воды, окружающей зоны гидротермальных источников. Сероводород - очень ядовитое вещество, практически у всех животных он блокирует дыхание, занимая места связывания кислорода на молекулах гемоглобина и инактивируя важный дыхательный фермент - цитохром-с-оксидазу.
Однако вестиментиферы отлично живут при таких концентрациях сульфида в окружающей среде, которые для большинства живых организмов смертельны. Мало того, их ярко-красные щупальца-жабры улавливают в воде и передают в кровь (на долю крови у этих животных приходится более 30% общего объема тела) одновременно и кислород, нужный для дыхания самих погонофор, и сероводород, необходимый питающим их бактериям. Исследования показали, что гемоглобин вестиментифер совершенно не похож на гемоглобин большинства других живых существ. Его молекула очень крупная (молекулярная масса составляет 2 млн дальтон (Да), в то время как молекулярная масса гемоглобина человека - 64000 Да). При этом гемоглобин вестиментифер содержится в плазме крови в свободном виде, а не заключен внутри эритроцитов, как у позвоночных животных. Гемоглобин вестиментифер способен одновременно связывать и кислород, и сероводород - молекулы этих веществ присоединяются к большой молекуле гемоглобина в разных участках. Таким образом решаются сразу две задачи - сульфид не нарушает дыхание животного и при этом не окисляется кислородом до попадания в бактериальную клетку. Сложная кровеносная система вестиментифер содержит две системы капилляров: одну в щупальцах, а другую в трофосоме. Сеть капилляров кровеносной системы проникает непосредственно внутрь клеток трофосомы и при этом так густа, что любую бактерию от ближайшего капилляра отделяет не более двух других бактерий. Гемоглобин вестиментифер соединяется и с кислородом и с сероводородом, при этом сероводород обратимо связывается с белковой частью молекулы, а кислород - с гемом. Впрочем, при недостатке кислорода бактерии способны получать его, переводя нитраты, которыми богаты глубинные воды океана, в нитриты. Бактерии, защищенные внутри организма хозяина от неблагоприятных воздействий, получают от него сероводород и кислород. За счет самопереваривания части клеток трофосомы вместе с бактериями хозяин получает органические вещества, которые служат единственным источником питания вестиментифер. Таким образом, сожительство хемосинтезирующих бактерий и вестиментифер является взаимовыгодным симбиозом.
Хотя вестиментиферы являются преобладающими по численности многоклеточными, живущими здесь, симбиоз с хемотрофными бактериями свойствен не только им. Исследования показали, что подобным же образом получают пищу и двустворчатые моллюски двух обитающих около гидротермальных выходов видов - Calyptogena magnifica и Bathymodiolus termophilus. У Calyptogena серобактерии поселяются на жабрах, где они могут легко получать необходимые им кислород и углекислый газ. Однако сероводорода в окружающей жабры моллюска воде относительно немного - в отличие от рифтий, гемоглобин Calyptogena необратимо инактивируется сульфидом. Так, чтобы иметь возможность и есть, и дышать, моллюскам приходится располагаться на границе чистой воды и исходящих из источника струй, насыщенных химическими соединениями. В такую струю Calyptogena опускает свою далеко вытягивающуюся ногу. В крови моллюска присутствует особый транспортный белок, способный лучше гемоглобина и цитохром-с-оксидазы связывать сероводород и тем самым предотвращающий блокирование дыхания. С помощью этого белка сульфид и переносится с током крови от места поглощения к бактериальным клеткам на жабрах, не окисляясь и не отравляя по дороге самого моллюска.
У представителей второго вида двустворчатых, Bathymodiolus thermophilus, особенности транспорта H 2 S не изучены, известно только, что и у них серобактерии поселяются на жабрах. Оба вида
Остальные многоклеточные обитатели гидротермалей, во всяком случае, крабы, креветки и рыбы, питаются обычным образом. Они либо отфильтровывают мелкие пищевые частицы (в том числе и бактерий) из воды, либо хищничают, обкусывая, например щупальца вестиментифер. Однако и таким животным приходится вырабатывать определенные приспособления для жизни в столь специфических условиях. Крабы, например, способны нейтрализовать ядовитый сероводород, окисляя его до менее токсичного тиосульфата. Происходит этот процесс в гепатопанкреасе - специальной ткани, по своим функциям сходной с печенью позвоночных животных.
В общем, подводные "райские сады" являются удивительными, совершенно необычными экосистемами, механизмы адаптации членов которых изучены еще далеко не полностью.
Открытие симбиотрофного (обеспечиваемого симбионтами) питания у вестиментифер, натолкнуло исследователей на мысль, что таким же способом могут питаться и типичные погонофоры, известные задолго до открытия гидротермальных оазисов. В их организме имеется загадочный орган - замкнутый с обоих концов срединный канал. В клетках этого органа были найдены бактерии, что позволило считать срединный канал гомологом трофосомы. Правда, бактерии, найденные у погонофор принадлежат к другой группе прокариотных организмов - это метанокисляющие бактерии. Они окисляют метан и за счет полученной энергии синтезируют органическое вещество.
Откуда же берется метан в толще грунта? Оказывается, что в таких высоких концентрациях (около 1 мл на кубический дециметр грунта), при которых бактерии способны не только существовать, но еще и "кормить" хозяина, метан может появиться, прежде всего, в результате просачиваний из подводных месторождений нефти и газа. Поэтому места обитания погонофор перспективны для поисков подводных залежей этих ценнейших ископаемых. Интересно, что те районы, в которых обитают немногие относительно мелководные виды погонофор (Северное море, прибрежные районы вблизи о. Сахалин, Баренцево море) - это как раз районы в которых уже ведётся добыча нефти и газа или известны их запасы.
Большинство представителей класса погонофор - обитатели больших глубин Мирового Океана, где пока нефть и газ не добывают и даже не ищут. Современные технологии пока не рассчитаны на добычу полезных ископаемых с больших глубин. Но недалеко то время, когда мелководные месторождения истощатся. Вот тогда погонофоры и укажут нам, где нужно искать нефть и газ на больших глубинах.
Исследования яйцеклеток вестиментифер показало, что бактерий в них нет и, следовательно, бактериальные симбионты от матери к потомству не передаются. Откуда же берутся бактерии, живущие в клетках трофосомы вестиментифер?
Ответ на этот вопрос удалось получить в результате изучения личиночного развития вестиментифер. Оказалось, что личинки вестиментифер имеют нормально развитый рот и кишечник. В течение нескольких суток они плавают в толще воды с помощью венчика ресничек, затем опускаются на субстрат и ползают по поверхности грунта. Они заглатывают хемосинтезирующих бактерий из внешней среды, заражаются ими, после чего рот и анус у молодых вестиментифер редуцируются, а кишечник превращается в орган бактериального питания - трофосому. Недавние исследования показали, что личинки типичных погонофор тоже имеют нормальный рот и кишечник и заражаются симбионтами (метанокисляющими бактериями) из внешней среды. Любопытно, что трофосома погонофор сохраняет просвет (недаром же ее раньше называли срединным каналом) и больше похожа на кишечник, чем сильно видоизмененная трофосома вестиментифер.
Органическое вещество в обычных сообществах происходит за счёт процесса фотосинтеза и далее мигрирует по пищевым цепям, пока не подвергнется распаду в организмах животных, грибов и гетеротрофных бактерий. Органическое вещество в большинстве глубоководных сообществ также имеет фотосинтетическое происхождение. Когда-то оно было произведено планктонными водорослями в поверхностном слое воды толщиной 50-100 м. Эти водоросли были съедены планктонными ракообразными, которые стали пищей планктоядным рыбам, а те, в свою очередь, стали жертвами хищных рыб, кальмаров и зубатых китов. Не полностью разложившиеся остатки организмов, погибших в верхних слоях воды, опускаются в глубины океана и становятся пищей для немногочисленного донного населения. Разумеется, до дна доходит лишь ничтожная доля органического вещества, произведенного в верхних слоях воды: ведь пока трупик рачка или мертвое тело крупной акулы пройдет свой "последний" путь длиной от 3 до 6 км по вертикали (а над океанскими впадинами этот путь удлиняется до 11 км), он может быть несколько раз съеден разнообразными организмами, населяющими толщу воды (не говоря уже о бактериях, которые на всем пути продолжают свою разрушительную работу). Вот почему биомасса донных организмов на больших глубинах океана составляет всего 0,1 - 0,2 г на кв. м.