Совместная жизнь
Шрифт:
Каким образом клетки, содержащие одинаковый геном, могут иметь разную форму и выполняют разные функции? Для этого должны синтезироваться разные белки, которые идут и на строительство клеток, и на ферментативные функции. Гены во всех клетках одинаковые, за исключением половых клеток. То есть, гены во всех клетках одинаковые, но при этом клетки имеют разную форму и разные функции. Это объясняется тем, что в каждой клетке работают не все гены, а только те, которые нужны в данный момент. Гены могут включаться и выключаться, то есть, как говорят, активироваться либо быть репрессированными (выключенными).
РНК-полимераза - это фермент, который считывает генетическую информацию с ДНК и синтезирует матричную РНК. В РНК-полимеразе есть х-фактор - белок, который распознает промотор и помогает РНК-полимеразе на него сесть и начать транскрипцию. Таким образом переключается работа больших групп генов, это
Интересно, что циклический АМФ используется не только для регуляции внутриклеточных процессов, но и для межклеточной коммуникации при формировании многоклеточности. Расскажем об этом на примере уникального организма - амёбы, которая называется Dictyostelium discoideum. Это одноклеточная амёба, которая живет в почве и питается бактериями. Иногда её относят к грибам.
Когда всё хорошо, амёбы диктиостелиума ползают по своему месту обитания, питаются и делятся время от времени. Но если они голодны, долго не попадалось хорошей еды и их энергозапасы начинают истощаться, они выпускают во внешнюю среду цАМФ, соседние клетки-амёбы этот сигнал воспринимают. Если клетки сыты, то они на него не реагируют, если же они голодны, то они начинают сползаться в кучу. Вначале они собираются небольшими группами, выпускают циклический АМФ, его концентрация становится больше, поэтому одиночные клетки-амёбы начинают к ним подползать, образуя агрегат клеток. В итоге к самой большой кучке сползаются остальные группы клеток, и они формируют единый многоклеточный организм, который называется псевдоплазмодий. Миллионы таких клеток собираются вместе и образуют огромную клеточную массу, сильно смахивающую на многоклеточный организм. Он способен ползать, и в отличие от амёбы, способен перемещаться на заметные расстояния. Эта масса передвигается и реагирует на свет и химические вещества, словно единое животное. Он с довольно заметной скоростью уползает из плохого места. Если ему удается переползти туда, где есть еда, то он опять распадается на отдельные клетки-амёбы, которые, как приличные одноклеточные амёбы, начинает питаться. Если же он ползёт - ползёт, а хорошая жизнь всё не наступает, то он останавливается, примерно 20% клеток ползут вверх, образуя жёсткий стебелёк, и затем отмирают (то есть, приносят себя в жертву всем остальным). По стебельку остальные клетки переползают на самую верхушку, образуют плодовое тело, в котором созревают споры. В конечном итоге слизевик предстаёт в виде плодоносящего тела, во многом похожего на спорангий какого-либо гриба. У него имеется высокая ножка с защитной внешней оболочкой, а сверху располагается мешочек со спорами. Они разбрасываются на некоторое расстояние вокруг, пережидают неблагоприятный период. Когда наступает хорошее время, они прорастают в амёбы, и вся история начинается заново.
Эта амёба не является ни одноклеточным, ни многоклеточным организмом. В её случае мы сталкиваемся с тем, что то, что можно наблюдать в живой природе, сложнее, чем придуманная людьми система классификации. Dictyostelium часть своей жизни одноклеточный, другую часть - многоклеточный, и он способен переходить из одной формы в другую, то есть, так просто его не классифицируешь. Он на стадии псевдоплазмодия имеет дифференцированные клетки. Его передний конец обладает хеморецепцией, он лучше всё чувствует, чем задний конец псевдоплазмодия. И образование плодового тела - это процесс уже ярко выраженной дифференциации, при которой 20 % клеток образует стебелёк и погибают. Размер генома Dictyostelium'a 3.5x107 bp. Мы можем назвать Dictyostelium факультативно многоклеточным.
Итак, благодаря тому, что не все гены работают в клетке одновременно, клетка может менять программу своей активности, образовывать разные ферменты и иметь разную форму. Это происходит как у одноклеточных, так и у многоклеточных. У многоклеточных регуляция ещё более сложная, так как помимо внутриклеточных процессов нужно регулировать ещё межклеточные взаимодействия. Но возникает вопрос, как вообще могли образоваться многоклеточные? Как исходно одноклеточные организмы превратились в многоклеточные? У практически всех одноклеточных известны мутанты, не расходящиеся при делении клетки. То есть нормальное
Есть такие черви, которые после деления не расходятся, а образуют временные линейные колонии. Если их друг от друга отделить, они будут дальше вполне комфортно жить. Такая колония может потом сама разделиться. Но происходит это не сразу, какое-то время черви живут все вместе.
Существуют колонии так называемых гидроидных полипов. Напомним, что гидра относится к типу Кишечнополостных, подцарство Metazoa. Тело гидры имеет вид удлиненного мешочка. Его внутренность - кишечная полость - сообщается с внешней средой через ротовое отверстие, окруженное несколькими щупальцами. Стенки мешочка состоят из двух слоев клеток: внутреннего (энтодерма) и внешнего (эктодерма). И в эктодерме, и в энтодерме много мышечных клеток, содержащих волоконца, которые могут сокращаться, приводя тело гидры в движение. Кроме того, в эктодерме есть и нервные клетки, причем клетки, расположенные ближе всего к поверхности, - это рецепторы, а клетки, заложенные глубже, среди мышц, - эффекторы. Если к гидре прикоснуться иглой, она сжимается в комочек. Это простой рефлекс, вызванный передачей возбуждения от рецепторов к эффекторам. Но гидра способна и к гораздо более сложному поведению. Захватив добычу, она подтягивает её щупальцами к ротовому отверстию и заглатывает.
Такое строение имеют и остальные представители кишечнополостных. Многие виды кишечнополостных образуют колонии. Колония животных - гидроидных полипов, с виду похожа на растение. Каждый "листочек" такого "растения" имеет такое же строение, как гидра.
Жизненный цикл у некоторых из гидроидных полипов проходит следующим образом: полипы растут вместе, они объединены общим проводящим каналом, время от времени некоторые из них отрываются, превращаются в медуз (принципиальное строение гидры и медузы одинаковое), которые уплывают и активно размножаются, проходят определенные стадии, образуют половые клетки, которые, сливаясь, дают зиготу, из которой вырастает новый полип. И снова весь цикл повторяется.
Известные нам красивые кораллы - это скелет коралловых полипов. Полипы - похожие на гидру существа, у которых есть общий проток воды по общим объединяющим их каналам, они строят для себя известковый скелет. У некоторых этот скелет включает в себя соединения железа, которые окрашивают его в красивый красный цвет. Коралловые полипы живут в море.
Следующая стадия мадрепоровый коралл. У него отдельные полипы уже неразличимы, они все сливаются в единое целое, от них остаются только глотки с щупальцами, причём эти щупальца обобществлены, они заглатывают кусочки пищи и направляют её в общую полость. Справа виден родственник гидры и полипа - мшанка кристателла. У неё тоже отдельные особи сливаются своими основаниями. Каждая особь называется не полипом, а зооидом, то есть, это как бы и не отдельное животное, и не орган. Они способны втягиваться в трубку у основания общего тела. Объединенная часть их образует подошву, и, в отличие от кораллов, мшанка способна передвигаться со скоростью 15 мм в сутки.
Другой более отдаленный родственник гидры - физалия - относится к подклассу сифонофор. Это животное называют португальский военный кораблик. У физалии есть сверху парус, который может иметь разную окраску, от голубого до пурпурного. Она довольно ядовитая, у неё есть стрекательные клетки, которые способны сильно отравить даже человека, не говоря уже о мелких животных, которыми она питается. На рисунке представлена схема строения сифонофор. Тело сифонофоры устроено из группы зооидов, разным образом модифицированных.
Самый верхний образует плавательный пузырь, внутри него находятся клетки, выделяющие газ, если физалии надо подняться на поверхность. Под плавательным пузырём находятся плавательные колокола - это как бы отдельные индивиды, но здесь они уже превращаются в органы. Ниже находятся индивиды, которые используются как половые органы, они не способны питаться, поэтому другие зооиды - гастрозоиды, их кормят, но не только их, но и весть "организм". Есть защитные зооиды, имеющие стрекательные клетки.