Современная космология: философские горизонты
Шрифт:
По-видимому, не было сделано попыток классификации типов бесконечности или хотя бы составления их перечня. Предлагаемый ниже обзор, вероятно, также не является исчерпывающим.
Выдвигаемая на обсуждение симпозиума точка зрения в известном смысле противоположна очерченной выше. Делается попытка найти единство в многообразии, трактовать различные аспекты бесконечности в математике, физике, астрономии и философии как различные отражения одной и той же реальности — реальной бесконечности реальной Вселенной.
§ 2. Типы бесконечности
2.1. Практическая бесконечность отличается тем, что а) является исторически первым и логическим простейшим представлением о бесконечности; б) несмотря на это чаще всего и вполне
Практически-бесконечное означает «достаточно большое (малое, близкое, далекое)». Что считать здесь доста-точным, это всецело зависит от конкретных условий рассматриваемой задачи. Бесконечно большими в этом смысле могут быть и расстояния в 1013, и в 10– 13 см (первое в астрономии, второе — в физике элементарных частиц). С точки зрения математика (во всяком случае, представителя классической математики), первая величина ничуть не ближе к бесконечно большому, чем вторая, а вторая представляет бесконечно малую ничуть не в большей мере, чем первая.
Несмотря на кажущуюся примитивность понятия практической (физической) бесконечности, уже в связи с ним могут быть поставлены некоторые далеко идущие вопросы.
2.1.1. Уже здесь мы сталкиваемся с противоречивостью бесконечного, с необходимостью рассматривать взаимоисключающие противоположности в их нераздельном единстве.
Математика не допускает замены бесконечного каким бы то ни было конечным, сколь бы велико (мало) ни было последнее, поскольку они суть взаимоисключающие противоположности. Физика же делает такую замену буквально на каждом шагу, и получающиеся при этом результаты неизменно оказываются правильными. Этим демонстрируется весьма убедительным образом если не тождество, то единство противоположностей.
Можно задаться вопросом о том, какова физическая или общекосмологическая подоплека того, что это оказывается возможным, что здесь практический разум в силах преодолеть антиномию чистого разума?
Формальная сторона вопроса очевидна: замена бесконечного конечным возможна потому, что результаты, которыми интересуется физика, являются приближенными (хотя и «сколь-угодно» точными). Речь идет не об этом. Можно представить себе такое устройство Вселенной, при котором полем на «достаточно большом» расстоянии от источника нельзя было бы пренебречь в силу, например, слишком тесного расположения источников (идеализация: «начинка» Вселенной — совершенная сплошная среда). Возможно, что этот случай в какой-то мере реализуется даже в нашей Вселенной — в области очень малых пространственно-временных масштабов (и, соответственно, очень энергичных взаимодействий). Область применимости понятия практической бесконечности так или иначе ограничена также «сверху», в космологических масштабах.
Забегая вперед, можно высказать утверждение об ограниченной, в принципе, применимости и более полных (совершенных, строгих) понятий бесконечности.
2.1.2. Поскольку в определенных пространственно-временных масштабах оказывается возможным пользоваться вместо бесконечного достаточно большим или достаточно малым конечным, встает вопрос, не следует ли попытаться и в математике перекинуть некий мост через пропасть, отделяющую бесконечное от конечного?
Интересную попытку такого рода мы находим, например, у Бореля[357] в связи с проблемой вероятности и достоверности в тех случаях, когда в игру вступают числа «сверхастрономические». Проблема, которая, по-видимому, еще очень далека от решения, состоит в следующем: не должна ли математика быть «исправлена» в том смысле, чтобы такие «сверхастрономические» числа можно было бы считать не конечными, а бесконечными? В этом случае практическая бесконечность стала бы разновидностью, аспектом математической бесконечности.
2.1.3. Для первобытного человека не только Вселенная, но и наша планета по своей пространственной протяженности была бесконечной в смысле практической бесконечности. По-видимому, можно утверждать, что в этом смысле Вселенная должна считаться бесконечной сейчас и должна будет считаться на протяжении всей истории человечества.
2.2. Бесконечность как безграничность. Практическая бесконечность есть выход за определенную границу, определенный предел. Следующей ступенью абстракции является понимание бесконечности в
Здесь не место останавливаться на всех перипетиях разрешения этих загадок, хотя они сами по себе представляют, возможно, одну из самых волнующих страниц истории человеческой мысли. Сейчас, ретроспективно, нам иногда даже трудно по-настоящему понять, в чем заключались сами трудности. Нам, например, нелегко представить себе, что долгое время после Ньютона и Лейбница бесконечно малые величины, бесконечно близкие точки на кривой и т. п. рассматривались в качестве некоего наличного бытия: сейчас мы начинаем изучение этих вещей, вооруженные с самого начала понятием предела, которое в истории математики явилось результатом мучительных исканий, получивших ответ лишь в начале XIX века в гениальных работах Коши. На место бытия стало становление, на место результата — процесс. Затем эти подходы причудливо чередовались, и сейчас, умудренные опытом прошлого, мы должны быть готовы признать, что бесконечность — это и бытие, и становление. В том или ином аспекте бесконечного превалирует то или другое (в бесконечности как безграничности — становление).
В геометрии понимание бесконечности как пространственной безграничности доминировало до Римана, в космо-логии — до Эйнштейна, в философии — даже до наших дней (хотя попытка его преодоления была предпринята еще Гегелем примерно в одно время с Риманом).
В геометрии (и, как следствие, в космологии) такое понимание бесконечности было тесно связано с восходящим по крайней мере к Евклиду пониманием пространства как чисто количественной категории, как протяженности (в философской литературе с таким пониманием пространства можно встретиться по сей день). На этой основе еще в античное время делались попытки доказать бесконечность Вселенной (строго говоря — безграничность пространства) чисто логическим путем. Из любой точки пространства можно протянуть жезл (бросить копье), затем из достигнутой точки повторить это, и так все вновь и вновь, нигде не натыкаясь на границу[358]. Гегель выразил это так: мир нигде не заколочен досками. Он считал бесконечность пространства примером «дурной» бесконечности (бесконечности как отрицания конечности, бесконечности бесконечного прогресса): «Сначала ставят границу, затем переступают ее, и так до бесконечности»2.
В этих рассуждениях предполагалось, что таким путем можно пройти сколь-угодно большое расстояние. Теперь мы знаем, что это не обязательно так. Проблема аналогична той, которая вызывала споры до путешествия Магеллана. Можно ли, плывя строго в определенном направлении, скажем, на запад, тем не менее оказаться в конце концов в исходной точке, вернувшись в нее с востока и покрыв при этом конечное расстояние? Сейчас положительный ответ столь же очевиден, сколь очевиден был отрицательный ответ лет пятьсот тому назад. Не обстоит ли дело так же при движении (протягивании жезла, бросании копья) в пространстве, не окажемся ли мы в результате движения строго в одном определенном направлении в конце концов в исходной точке, вернувшись в нее с противоположной стороны и пройдя конечное расстояние в пространстве?
Эта чудовищная, с точки зрения здравого смысла, т. е. привычных представлений, постановка вопроса стала естественной с созданием метрической геометрии Риманом.
2.3. Метрическая бесконечность. Это основное для современной (релятивистской) космологии понимание бесконечности. Это не «очень большое» древних и «сколь-угодно большое» дорелятивистской физики и математики, а понятие бесконечности, связанное с приписыванием пространству или пространству-времени наряду с чисто количественной характеристикой также некоей внутренней, качественной определенности (метрических свойств и важнейшего из них — кривизны).