Современная космология: философские горизонты
Шрифт:
Выдвигались (и выдвигаются) гипотезы, которые в психологическом аспекте могут быть квалифицированы как оптимистические, вселяющие утешительную надежду, что при движении в одну из сторон (меньшего или большего) или в обоих направлениях лестница качеств или, точнее, мер, поскольку качество оказывается тесно связанным с количеством, будет исчерпана, что существует определенная граница (снизу или сверху, либо и снизу, и сверху) «потоку бесконечного». Назовем такие гипотезы гипотезами конечности.
Для экстенсивной бесконечности примеры приводились выше. Это, например, идея замены бесконечного в математике очень большим, но конечным (в числовом выражении — «сверхастрономическим» числом), а в космологии — идея пространственно
Упомянем об аналогичных гипотезах в отношении интенсивной бесконечности (интенсивной конечности). В теории элементарных частиц предположение об интенсивной бесконечности пространства и времени влечет (на современном уровне наших знаний) за собой вывод об экстенсивной бесконечности энергии, массы, заряда, что считается неудовлетворительным не только в вычислительном, но и в принципиальном отношении. Для преодоления этой трудности выдвигаются различные варианты гипотезы о дискретности пространства и времени, о том, что не существует интервалов меньше определенной малой, но конечной протяженности. Еще более радикальной является гипотеза конечного (на взгляд докладчика, лучше сказать, счетного) континуума: пространство состоит из большого, но конечного числа точек.
Разумеется, как и в случае концепции конечной Вселенной, было бы совершенно неверно сводить причины появления таких гипотез к психологической, эстетической или идеологической области. Причина их появления прежде всего та, что они дают определенный эффект в физике, позволяют преодолеть или обойти определенные трудности, возникающие в ходе развития физических наук.
Надежда получить некое окончательное решение проблем пространственно-временного континуума с помощью гипотез конечности вряд ли оправдана. В этом отношении очень поучительна история релятивистской космологии.
Как известно, Эйнштейн надеялся вывести из своей теории тяготения однозначный вывод о пространственной конечности Вселенной. Но уже через несколько лет после появления этой теории A.A. Фридман показал, что она допускает как конечность, так и бесконечность Вселенной. В свете исследований последнего десятилетия стало ясно, что положение еще намного «хуже»: если бы даже и удалось доказать пространственную конечность (замкнутость), например, Метагалактики, то это вовсе не означало бы, что Вселенная сводится к Метагалактике. В физических приложениях, как мы видели, не только метрическая, но даже и топологическая замкнутость пространства далеко не абсолютна. Она означает всего лишь весьма сильную автономность данной физической системы. Если и «сверхзвезды», и Метагалактика суть антиколлапсирующие системы, то может существовать целая иерархия (в принципе, даже бесконечная иерархия!) замкнутых пространств.
Аналогичное положение может существовать и в микрофизике, словом, пространство может оказаться замкнутым не только сверху, но и снизу, в направлении бесконечно малого, но это также, вероятно, окажется не абсолютной, а относительной, физической замкнутостью.
Отсюда вместе с тем следует и полная правомерность изучения того, что могут дать гипотезы (постулаты) конечности в космологии и микрофизике. Это важно не только с точки зрения непосредственных физических приложений (релятивистская астрофизика), но и в интересах самой проблемы бесконечности. В силу «сопряженности» конечно-сти и бесконечности познание бесконечности предполагает выяснение смысла и пределов применимости понятия конечного (замкнутого).
В области очень малых пространственно-временных масштабов, как и в области очень больших, свойства континуума могут очень радикально отличаться от привычных. Не только метрические соотношения могут быть иными, сами метрические понятия могут оказаться
2.6. Теоретико-множественная бесконечность. По современным представлениям топологические свойства пространства-времени — это наиболее общие его свойства, сохраняющиеся при наиболее глубоких деформациях (преобразованиях). Более общих геометрических свойств мы сейчас не знаем. И все же, возможен еще более общий, — так сказать, общематематический подход к проблеме. Поскольку всю современную математику проникают понятия и методы теории множеств, такой подход является теоретико-множественным.
Но в современной математике топология и теория множеств настолько переплетаются между собой и с другими разделами математики, что определить точные границы их компетенции затруднительно. Столь же трудно провести грань между геометрией и остальной математикой. По словам акад. А.Н. Колмогорова, «вся та часть математики, в которой играет роль непрерывность, грозит сделаться геометрией, так как множество любых математических объектов (например, функций), в котором могут быть установлены топологические соотношения, может быть объявлена пространством. Таким образом, вместе с геометризацией всей непрерывной математики намечается исчезновение геометрии как самостоятельной и до известной степени противоположной всей остальной математике науки».
«Заметим здесь, — продолжает А.Н. Колмогоров, — что развитие общих геометрических идей в значительной мере задерживалось философскими спорами о природе пространства… Зато только после окончательного установления понятия абстрактного математического пространства приобрел ясный смысл и вопрос об устройстве физического пространства. Теперь вопрос этот ставится в такой форме: какое из многочисленных могущих быть построенными абстрактных математических пространств отражает с точностью, соответствующей нашим экспериментальным возможностям, строение физического пространства? Ответ на этот вопрос, естественно, может эволюционировать с ростом наших знаний»[370].
Что существенно нового вносит теория множеств в решение проблемы бесконечности?
Следует прежде всего подчеркнуть тесную связь теории множеств с этой проблемой. Сама теория возникла из стремления решить именно эту проблему. Можно сказать вместе с Э. Кольманом, что, «когда математики сделали серьезную попытку преодолеть затруднения и противоречия, вызванные в математике понятием бесконечности, они создали теорию множеств»[371].
Теория множеств устранила те противоречия, для устранения которых она была создана, но отнюдь не противоречия вообще. На место устраненных противоречий встали новые, более глубокие, но они относятся не столько к сфере математики, сколько метаматематики, в частности, к проблемам оснований математики и математической логики).