Сознающий ум. В поисках фундаментальной теории
Шрифт:
«Копенгагенскую интерпретацию», выдвинутую Бором и его коллегами, нередко считают одной из вариаций этого воззрения, хотя сочинения Бора несколько неоднозначны и сложны для толкования. В них можно найти намеки и на какие-то моменты, характерные для первого варианта решения, равно как и на эпистемологическую версию данного варианта. Бор всячески подчеркивал «классическую» природу измерительных приборов, и его позицию можно понять так, будто он считал, что только классические (или макроскопические) объекты имеют объективные состояния. На вопросы же о реальном состоянии объекта, описываемого с помощью суперпозиции, попросту накладывается запрет. Это, однако, предполагает разведение классических и квантовых систем, которое трудно осуществить по объективным основаниям; трудно также представить, что реальность просто «растворяется» по мере того, как мы переходим от макроскопического к микроскопическому уровню. Многим казалось, что если
Если буквалистская интерпретация постулата измерения неприемлема и если он не может быть выведен из имеющихся физических принципов, то естественно предположить, что эти принципы не исчерпывают того, что здесь происходит. Быть может, если мы постулируем дополнительные базовые физические принципы, то мы сможем менее проблематично объяснить эффективность квантово-механического исчисления.
Первый способ сделать это — удержать идею коллапса, но дать ей иное объяснение. Подобная стратегия сохраняет допущение, что базовые физические состояния — это волновые функции, задаваемые уравнением Шредингера, но вводит новые принципы для объяснения того, как микроскопические суперпозиции превращаются в макроскопическую дискретность.
Самым известным примером данной стратегии является «ЖРВ» — интерпретация, которой мы обязаны Жирарди, Римини и Веберу (Ghirardi, Rimini, and Weber 1986; см. также Bell 1987а) [193] . В этой интерпретации постулируется фундаментальный закон, в соответствии с которым вектор состояния положения любой элементарной частицы может претерпевать микроскопический «коллапс» в любой момент с очень небольшой вероятностью (шанс того, что частица коллапсирует в данную секунду, примерно равен 1 из 1015). Когда подобный коллапс происходит, это, как правило, приводит к коллапсу состояния той макроскопической системы, в которую она включена, вследствие наличия там неразрывных связей. В любой макроскопической системе имеется множество таких частиц, так что из сказанного следует, что любая макроскопическая система в любое время, как правило, будет находиться в относительно дискретном состоянии. И можно показать, что итоговый результат будет очень близок к тому, чтобы воспроизводить предсказания постулата измерения.
193
Мое обсуждение ЖРВ-интерпретации опирается на (Albert and Loewer 1990) и (Albert 1992).
Альтернатива состоит в том, чтобы исключить необходимость в коллапсе путем отрицания того, что базовый уровень реальности репрезентируется волновой функцией с присущей ей суперпозицией. Если такие свойства, как положение, имеют определенные значения даже на базовом уровне, то в коллапсе не будет никакой необходимости. Подобная теория постулирует «скрытые параметры» на базовом уровне, напрямую объясняющие дискретность реальности на макроскопическом уровне. Ценой этого предположения оказывается то, что теперь мы нуждаемся в новых принципах, которые позволили бы объяснить, почему принципы изменения волновой функции и коллапса кажутся настолько эффективными.
Наиболее известной в этой связи является теория, разработанная Бомом (Bohm 1952). Согласно этой теории, положение базовых частиц всегда является чем-то определенным. Волновая функция сохраняет роль некоей «волны-пилота», направляющей изменение положения частицы, и сама волновая функция подчиняется уравнению Шредингера. Вероятностные предсказания постулата измерения получают новую интерпретацию и трактуются в качестве статистических законов. В соответствии с этой теорией оказывается, что мы никогда не можем знать точного положения частицы до соответствующего измерения, а можем знать только ее волновую функцию. Постулат измерения говорит нам о том, какая пропорция частиц при данной волновой функции будет иметь то или иное положение. Поэтому он дает нам наилучшие статистические предсказания, которые мы только можем ожидать, учитывая отсутствие у нас знания об этом.
Все предложения указанного типа сталкиваются с проблемами. Как ЖРВ — интерпретация, так и интерпретация Бома подчеркивают определенность положения, нарушая тем самым симметрию между положением и импульсом в квантово-механическом исчислении. Это оправдано в целях предсказания, так как можно попробовать показать, что наши суждения
ЖРВ — теория сталкивается и с дополнительными трудностями, наиболее серьезной из которых, возможно, является то, что из нее, строго говоря, не следует, что макроскопический мир вообще дискретен. Макроскопическое состояние по-прежнему репрезентируется волновой функцией с суперпозицией: хотя ее амплитуда по большей части концентрируется в одном месте, она не равна нулю везде, где не равна нулю амплитуда неколлапсированной волновой функции. И это возобновляет проблемы, связанные с суперпозицией. Стрелка по-прежнему показывает на множество мест, даже после измерения. Конечно, амплитуда, связанная с большинством этих мест, очень невелика, но трудно понять, почему низкоамплитудная суперпозиция хоть в чем-то более приемлема, чем высокоамплитудная.
Теория Бома имеет меньше технических проблем в сравнении с ЖРВ — интерпретацией, но из нее вытекает ряд странных следствий. Наиболее поразительным из них является ее крайняя нелокалъностъ. (Любая теория, говорящая о скрытых параметрах и сообразная с предсказаниями данного исчисления, должна быть нелокальной по причинам, указанным Беллом, — см. Bell 1964 [194] .) Дело не сводится к тому, что свойства одной частицы могут мгновенно влиять на свойства другой частицы, находящейся на расстоянии от нее. Оказывается, что при определении траектории частицы мы, возможно, должны принимать во внимание волновые функции частиц, существующих в других галактиках! Все они содействуют формированию глобальной волновой функции, и эта волновая функция одновременно управляет траекториями частиц во всей вселенной.
194
Заметим, что это единственное место в данной главе, где мы касаемся теоремы Белла и результатов Эйнштейна — Подольского — Розена (ЭПР). Иногда эти результаты рассматриваются в качестве главного источника философских проблем, связанных с квантовой механикой, но, на мой взгляд, эти проблемы возникают еще до соображений ЭПР. Даже без ЭПР мы стояли бы перед трудным выбором между коллапсом, скрытыми параметрами и Эвереттом. ЭПР просто добавляют трудностей теориям скрытых параметров, показывая, что они (как и коллапс) должны быть нелокальными; и, вполне возможно, повышают привлекательность интерпретации Эверетта, единственной локальной интерпретации совместимой с данным результатом.
Но, возможно, наиболее фундаментальным основанием с подозрением относиться к этим интерпретациям является то, что они постулируют наличие чего-то сложного за чем-то простым. Невзирая на проблемы квантово-механического исчисления, оно исключительно просто и элегантно. Эти же интерпретации вводят сложные дополнительные принципы, имеющие к тому же характер допущений, сделанных сравнительно ad hoc, для замены и объяснения этого простого каркаса. Сказанное несколько в меньшей степени применимо к ЖРВ-интерпретации, дополнительное усложнение которой состоит только во введении двух новых фундаментальных констант и нарушении симметрии между положением и импульсом; но остается удивительной «удачей» то, что значения констант оказываются именно такими, что они могут почти воспроизводить предсказания стандартной модели. Дополнительные усложнения, связанные с интерпретацией Бома, хуже тех; она постулирует определенность положений и волновую функцию, сложный новый фундаментальный принцип, посредством которого волновая функция определяет положение частиц, а также нарушает симметрию изначальной модели.
Мы могли бы сказать, что эти интерпретации создают такое впечатление, будто мир был создан Декартовым злым демоном, так как они заставляют нас верить, что мир устроен не так, как в действительности. Как выражаются Алберт и Левер (Albert and Loewer 1989), Бог у Бома не играет в кости, но наделен извращенным чувством юмора. Сценарий, в котором сложная бомовская интерпретация воспроизводит предсказания простой модели лишь по своей степени отличается от того случая, когда данные, поступающие в мозг в бочке, выстраиваются таким образом, чтобы создавать видимость непосредственно данного внешнего мира. Она напоминает «интерпретацию» эволюционной теории, согласно которой Бог в готовом виде создал окаменелости несколько тысяч лет назад, обеспечив тем самым воспроизведение предсказаний эволюционной теории. Простота объяснительной модели была принесена в жертву ради сложной гипотезы, которой удается воспроизвести результаты изначальной теории.