Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Отсюда возникает вопрос, может ли светиться проводник? Что лишает такой материал как, например, металл, возможности светиться, если это свойство характеризует его как проводник? Общеизвестно, что большинство светящихся тел теряют это свойство, когда их нагревают до такой температуры, что они становятся в той, или иной степени электропроводными.

Таким образом, если металл будет в большой мере, а возможно и полностью лишен этой способности, он должен получить способность светиться. Следовательно, возможно, что при очень высокой частоте, когда он ведет себя как непроводник, металл или другой проводник может проявить способность к фосфоресценции, даже если он совершенно не способен светиться под действием низкочастотного разряда. Однако, возможен и другой способ вызвать свечение проводника.

До сих пор еще имеется много неясностей в отношении того, что же в реальности представляет собой фосфоресценция, и не называют ли этим термином разные явления, возникающие вследствие одних и тех же причин. Представьте себе, что в разреженной лампе под действием молекул поверхность куска металла или другого проводника начинает светиться ярким светом, но при этом обнаруживается, что он остается сравнительно холодным. Можно ли

этот яркий свет назвать фосфоресценцией? Такой результат, по крайней мере, теоретически, возможен, это не более чем вопрос разности потенциалов или скорости. Предположим, что разность потенциалов на электроде, и, следовательно, скорость выбрасываемых атомов достаточно высоки. Тогда, поверхность куска металла, бомбардируемого атомами, должна сильно накаляется, поскольку процесс выработки тепла происходит несоизмеримо быстрее, чем излучение и отток тепла от поверхности. Глазу наблюдателя может показаться, что единичное столкновение атомов сопровождается мгновенной вспышкой, но если вспышки повторяются с достаточно высокой частотой, то они производят непрерывное воздействие на сетчатку глаза. При этом наблюдателю будет казаться, что поверхность металла имеет постоянный накал и светится с постоянной интенсивностью, тогда как в реальности, такой свет является прерывистым или, по крайней мере, периодически меняет свою интенсивность. Температура куска металла будет повышаться до тех пор, пока не установится состояние равновесия, т. е. до тех пор, пока непрерывно излучаемая энергия не будет равна поглощаемой. Однако в таких условиях вполне может сложиться ситуация, когда подаваемой энергии может оказаться недостаточно для того, чтобы повысить температуру тела свыше среднего значения, особенно тогда, когда частота атомных столкновений очень низкая — но достаточная для того, чтобы человеческий глаз не различал колебания интенсивности света. Тогда тело благодаря способу, которым оно получает энергию, должно излучать сильный свет, а температура тела должна быть ниже среднего значения. Как наблюдатель назовет полученный таким способом свет? Даже если анализ света покажет нечто определенное, он, вероятно, отнесет это к явлению фосфоресценции. Возможно, что таким образом и электропроводные, и неэлектропроводные тела могут поддерживаться в состоянии определенной интенсивности свечения, но энергия, необходимая для этого, очень сильно варьируется, в зависимости от природы и свойств тел. Эти и некоторые другие вышеупомянутые замечания умозрительного характера были сделаны просто для того, чтобы обозначить любопытные особенности переменного тока или электрических импульсов. С их помощью мы можем сделать так, чтобы при определенной средней температуре тело излучало бы больше света, чем оно могло бы излучить при той же температуре под действием постоянного тока. А также, мы можем довести тело до точки плавления, и чтобы при этом оно излучало меньше света, чем оно выделяет при температуре плавлении, достигнутой обычными способами. Все это зависит от того, как образом мы подаем энергию, и какой вид колебаний мы используем. В одном случае колебания больше, в другом — меньше, в зависимости от их восприятия нашими органами зрения.

Некоторые эффекты, полученные при первых же испытаниях с карборундом, и которые я до этого не наблюдал, я квалифицировал как фосфоресценцию, но из последующих экспериментов стало ясно, что это вещество не обладает данным качеством. Кристаллы карборунда обладают свойством, заслуживающим особого внимания. Например, в лампе с одним электродом в виде маленького круглого металлического диска, при определенной степени разрежения электрод покрывается пленкой молочно-белого цвета, которая отделена темным пространством от света, заполняющего лампу. Когда металлический диск покрыт кристаллами карборунда, пленка становится более интенсивной, а цвет ее становится снежно белым. Это, как я позже установил, является простым эффектом блестящей поверхности кристаллов, поскольку хорошо отполированный алюминиевый электрод создает более или менее похожий эффект. Я провел множество экспериментов с образцами полученных мною кристаллов, именно потому, что они вызывали особый интерес. Этот интерес заключался в изучении их способностей к фосфоресценции с учетом того, что они обладают свойствами проводника.

Мне не удалось получить отчетливое свечение, но следует заметить, что решающее мнение можно будет сформировать только тогда, когда будут проведены другие эксперименты в этой области.

В некоторых экспериментах поведение порошка было таким, как если бы он содержал оксид алюминия, но при этом он не становился сколь либо отчетливого красного цвета, столь присущего последнему. Сияние его тусклого цвета возникает в значительной степени под воздействием молекулярной бомбардировки, и сейчас я абсолютно уверен, что он не обладает способностью к фосфоресценции. Поскольку результаты испытаний порошка еще не окончательны, так как, возможно, порошок карборунда не ведет себя подобно фосфоресцирующим сульфидам, которые могут находиться в состоянии очень мелкой пыли и при этом не потерять способности к свечению. Он ведет себя подобно порошку алмазов, или рубинов. Поэтому, для того, чтобы провести решающий тест, необходимо поместить его в большую лампу и отполировать его поверхность.

Если карборунд докажет свою полезность в связи с этим и подобными экспериментами, то его главная ценность будет использована при изготовлении покрытий, тонких проводников, кнопочных или других электродов, хорошо противостоящих очень сильному нагреванию.

Получение небольшого электрода, выдерживающего высокие температуры, я считаю задачей величайшей важности в деле производства света. Это позволит нам с помощью токов очень высокой частоты, получать более чем в 20 раз большее количество света, нежели то, что сейчас от обычных ламп накаливания, при том же расходе энергии. Эта оценка может показаться излишне преувеличенной, но я думаю, что она близка к реальности. Поскольку это утверждение может быть неправильно понято, я думаю, что необходимо яснее осветить проблему, с которой мы столкнулись на этом направлении работ, и способ, которым, по моему мнению, ее можно разрешить.

Любой, кто начинает изучать эту проблему, полагает, что для этого нужна лампа с электродом, имеющим очень высокую степень накаливания. И это будет его ошибкой.

Сильный накал электрода является необходимым злом, а вот что действительно необходимо, так это сильный накал газа, окружающего электрод. Другими словами, проблема заключена в поиске лампы, способной довести газовую массу до наивысшей степени накала. Чем больше накаливание, тем быстрее основные колебания, тем больше экономичность получения света. Однако для того, чтобы поддерживать газовую массу в стеклянном сосуде в состоянии наивысшей степени накала в стеклянном сосуде, необходимо оградить газовую массу от соприкосновения со стеклом, то есть удерживать газ как можно ближе к центру сферы.

В одном из сегодняшних экспериментов образовался кистевой электрический разряд на конце провода. Этот кистевой разряд представлял собой пламя, и являлся источником тепла и света. Он не излучал ни сколь-нибудь ощутимого тепла, ни интенсивного свечения. Но разве оттого, что оно не обжигает мою руку, оно в меньшей степени является пламенем? Разве оно меньше является пламенем, если не причиняет боль моим глазам своим ярким светом?

Проблемой является получение в лампе такого пламени, которое было бы значительно меньшего по размеру, но несравнимо более мощным. Если бы в нашем распоряжении имелись средства для выработки электрических импульсов существенно более высокой частоты, и средства для их передачи, то от лампы можно было бы избавиться совсем, если конечно она не использовалась для защиты электрода, или для экономии энергии, ограничивая собой распространение тепла. Но поскольку в нашем распоряжении нет таких средств, то мы вынуждены помещать электрод в лампу и разрежать в ней воздух. Это сделано только для того, чтобы обеспечить работу прибора, которая невозможна при обычном давлении воздуха. В лампе мы можем усилить действие до любой степени — вплоть до того, чтобы кистевой разряд излучал яркий свет.

Интенсивность излучаемого света зависит от частоты и разности потенциалов импульсов, а также от электрической плотности на поверхности электрода. Очень важно использовать как можно меньший по размеру электрод, это необходимо для увеличения плотности. Когда вокруг маленького электрода происходят интенсивные столкновения молекул, то он раскаляется до очень высокой температуры, но вокруг него находится масса сильно раскаленного газа, или фотосфера пламени, которая в сотни раз превышает объем электрода.

Если в лампе использован электрод с алмазом, карборундом или цирконием, то фотосфера может превосходить объем электрода более чем в тысячу раз. Если особо не вдумываться, то может показаться, что при таком сильном накаливании электрод сразу испарится, но при детальном рассмотрении оказывается, что теоретически этого быть не должно, и результаты экспериментов это подтверждают. Именно этот факт определяет главную ценность такого типа ламп в дальнейшем.

Вначале, когда бомбардировка только начинается, основная работа происходит на поверхности электрода, но когда образуется сильно электропроводная фотосфера, нагрузка на электрод уменьшается. Чем больше раскалена фотосфера, тем сильнее ее электропроводность приближается к электропроводности электрода. Таким образом твердое тело и газ формируют единое электропроводное тело. Следствием этого является то, что при дальнейшем усилении накаливания, больше нагрузки приходится на газ и меньше на электрод. Образование мощной фотосферы оказывается главным фактором, обеспечивающим защиту электрода. Конечно, эта защита относительна, и не следует полагать, что при усиление накаливания уменьшается разрушение электрода. Тем не менее, теоретически, этот результат должен получаться при чрезвычайно высоких частотах, при температуре, намного превышающую точку плавления большинства из известных тугоплавких материалов. Поэтому электрод, способный противостоять очень мощной бомбардировке и другим внешним воздействиям, останется неповрежденным вне зависимости от того, как долго он подвергался такому, но более слабому воздействию. Применительно к лампе накаливания имеются совершенно иные соображения. Там газ ни с чем не связан: вся работа совершается на нити накаливания и время существования лампы ограничено только скоростью, с которой увеличивается степень накаливания. Именно экономические причины заставляют нас эксплуатировать ее при слабом накаливании. Но если лампа накаливания работает от тока очень высокой частоты, то действием газа пренебречь уже нельзя и правила экономной работы должны быть в значительной степени изменены. Для того, чтобы работа лампы с одним, или двумя электродами была близка к идеальной, необходимо задействовать импульсы очень высокой частоты. Помимо всего прочего, высокая частота предоставляет два важных преимущества, которые играют самую важную роль в экономических расчетах производства света. Во-первых, разрушение электрода уменьшается из-за того, что мы используем множество слабых воздействий, вместо нескольких сильных, которые быстро разрушают структуру электрода. Во-вторых, она способствует образованию большой фотосферы.

Для того, чтобы свести к минимуму разрушение электрода, желательно, чтобы колебания были гармоничными, так как любые рывки ускоряют процесс разрушения. Электрод проработает дольше, если накаливание создается током или импульсами, получаемыми от высокочастотного генератора переменного. Колебания такого тока происходят более плавно, нежели импульсы, получаемые от катушки пробойного разряда. В последнем случае нет сомнений, что большинство повреждений происходят из-за сильных внезапных разрядов. Одной из причин потерь энергии в такой лампе является бомбардировка сферы. Когда разность потенциалов очень высока, молекулы испускаются с большой скоростью, они ударяются о стекло и обычно вызывают сильное свечение. Получается очень красивый эффект, но по экономическим соображениям его следует избегать или сводить к минимуму. В данном случае, бомбардировка сферы, как правило, не вызывает фосфоресценцию, и потери энергии от бомбардировки снижаются. Эти потери энергии в лампе очень сильно зависят от разности потенциалов импульсов и от электрической плотности на поверхности электрода. При использовании тока очень высокой частоты, потери энергии в результате бомбардировки существенно уменьшаются. Во-первых, потому, что для получения такого же количества работы требуется меньшая разность потенциалов. Во-вторых, потому, что вокруг электрода создается высоко электропроводная фотосфера. То же самое получилось бы, если электрод был бы намного больше, что равнозначно меньшей электрической плотности.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Чапаев и пустота

Пелевин Виктор Олегович
Проза:
современная проза
8.39
рейтинг книги
Чапаев и пустота

Младший сын князя. Том 8

Ткачев Андрей Сергеевич
8. Аналитик
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Младший сын князя. Том 8

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Боги, пиво и дурак. Том 9

Горина Юлия Николаевна
9. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 9

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов

Как притвориться идеальным мужчиной

Арсентьева Александра
Дом и Семья:
образовательная литература
5.17
рейтинг книги
Как притвориться идеальным мужчиной

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Солдат Империи

Земляной Андрей Борисович
1. Страж
Фантастика:
попаданцы
альтернативная история
6.67
рейтинг книги
Солдат Империи

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

Страж Кодекса. Книга III

Романов Илья Николаевич
3. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Страж Кодекса. Книга III

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5