Стивен Хокинг. Непобедимый разум
Шрифт:
На рисунках 6.1b и 6.1c представлены две другие модели, которые также соответствуют предпосылкам Фридмана (вселенная выглядит одинаково во всех направлениях и из любой точки). На рис. 6.1b расширение происходит значительно быстрее. Гравитация не может его остановить, только слегка замедляет. На рис. 6.1с вселенная расширяется не так быстро, как на рис. 6.1b, но достаточно быстро, чтобы избежать коллапса. Скорость расхождения галактик становится все меньше и меньше, однако они продолжают расходиться. Если верна какая-либо из этих двух моделей вселенной, то пространство бесконечно: оно не заворачивается само на себя.
Рис. 6.1.
Какая модель соответствует нашей вселенной? Зависит от того, сколько во вселенной массы, сколько голосов в совокупности у электората. Чтобы “закрыть” вселенную, понадобится значительно больше массы, чем мы наблюдаем сейчас. Так в упрощенном виде формулируется намного более сложная проблема, к которой мы в дальнейшем еще вернемся.
Теория Пенроуза о звездах, которые в результате коллапса превращаются в черные дыры, работает лишь в бесконечном пространстве, во вселенной, которая будет расширяться вечно (как на рис. 6.1b и 6.1c), а не схлопнется (как на рис. 6.1а). Хокинг первым взялся доказать, что вселенная с бесконечным пространством не только должна иметь сингулярные точки в виде черных дыр, но и начиналась с сингулярной точки. Заканчивая свою работу, он почувствовал такую уверенность, что подытожил: “В прошлом у нас – сингулярная точка” [98] .
98
Hawking S. Ph. D. thesis. University of Cambridge, March 1966.
В 1968 году трактат Хокинга и Пенроуза о начале времен завоевал второй приз Фонда исследований гравитации, но вопрос все еще висел в воздухе: что, если правильна первая модель Фридмана, та, в которой пространство ограниченно и вселенную в итоге настигает коллапс (рис. 6.1а)? Можно ли утверждать, что и такой тип вселенной начинается с сингулярной точки? К 1970 году Хокинг и Пенроуз сумели доказать, что это верно и для такой вселенной. В “Публикациях Королевской академии” за 1970 год вышла их совместная статья [99] , где со всей определенностью утверждалось: если вселенная подчиняется общей теории относительности и соответствует любой модели Фридмана и если во вселенной имеется столько вещества, сколько мы наблюдаем, то она должна была начаться с сингулярной точки, в которой вся масса была спрессована до бесконечной плотности, искривление пространства-времени было бесконечным, и расстояние между любыми объектами равнялось нулю.
99
Hawking S. and Penrose R. The Singularities of Gravitational Collapse and Cosmology. Proceedings of the Royal Society of London A314 (1970), pp. 529–548.
Физическая теория не может работать с бесконечно большими числами. Предсказав сингулярную точку с бесконечной плотностью и бесконечным искривлением пространства-времени, общая теория относительности тем самым предсказала свой собственный конец. Любые научные теории разбиваются о загадку сингулярности. Мы утрачиваем возможность предвидеть, законы физики бессильны предсказать, что могло бы явиться из сингулярности – это может оказаться любая разновидность вселенной. А как насчет того, что произошло до образования сингулярности? Неизвестно даже, имеет ли подобный вопрос смысл.
Сказать, что в начале вселенной – сингулярная точка, все равно что сказать: начало вселенной лежит за пределами нашего знания, за пределами любых попыток создать теорию всего. Мы можем утверждать лишь, что время началось, потому что мы это видим, однако и тут немало гадательного. Сингулярность захлопывает дверь прямо у нас перед носом.
Сказка на ночь
Физиков
100
The Hawking Paradox, 2005.
Прекрасный пример того, как работал Хокинг, он сам приводит в книге “Краткая история времени”: “Как-то вечером в ноябре 1970 года, вскоре после рождения моей дочери Люси, я размышлял о черных дырах, пока укладывался спать. Мой недуг превращает укладывание в медленный процесс, поэтому времени для размышлений у меня было предостаточно” [101] . Другой ученый на месте Хокинга кинулся бы к столу записать основные мысли, уравнения, но Хокинг совершил одно из главных в своей жизни открытий в уме, с тем лег в постель и пролежал без сна до рассвета, дожидаясь первых лучей солнца, чтобы позвонить Пенроузу и поделиться с ним новыми идеями. Пенроуз, как утверждает сам Хокинг, тоже думал в этом направлении, однако не охватил последствия этой гипотезы.
101
Hawking S. A Brief History of Time, p. 103
Вот в чем суть пришедшей в голову Хокингу идеи: черная дыра не может уменьшаться в размерах, потому что периметр горизонта событий (граница невозврата, расстояние от центра, на котором вторая космическая должна превышать скорость света) не может сократиться.
Представим себе: в результате коллапса звезда съежилась до того радиуса, при котором вторая космическая совпадает со скоростью света. Что произойдет с фотонами, которые эта звезда испускает в момент, когда ее радиус станет еще меньше? Гравитация достаточно сильна, чтобы не позволить лучам света выйти за пределы этого радиуса, но не настолько сильна, чтобы втянуть их в черную дыру. Фотоны так и останутся мерцать по периметру, на прежнем расстоянии от центра, на постоянном горизонте событий. А сама звезда будет и дальше уменьшаться в размерах и не сможет более испускать фотоны.
Хокинг понял: если на горизонте событий скапливаются лучи света, векторы этих лучей не должны пересекаться. Если бы лучи приблизились друг к другу, они бы столкнулись и рухнули в черную дыру. Чтобы область горизонта событий сокращалась, чтобы черная дыра уменьшалась в размерах, как раз и нужно, чтобы лучи на горизонте событий сближались. И здесь парадокс: если они сблизятся, они рухнут в черную дыру, а горизонт событий не станет меньше.
Можно подойти к тому же выводу с другого конца: понять, что черная дыра может расти. Размеры черной дыры определяются ее массой, а значит, черная дыра увеличивается, когда что-то попадает в нее и пополняет ее массу. Поскольку ничто не может выйти из черной дыры, уменьшиться ее масса не может – а значит, не уменьшится и сама черная дыра.
Открытие Хокинга получило название второго закона динамики черной дыры: область горизонта событий (граница черной дыры) остается одинаковой или увеличивается, но никогда не уменьшается. Если две, или более, черные дыры столкнутся и сольются в одну, область нового горизонта событий будет равна сумме прежних или окажется больше этой суммы. Черную дыру нельзя уменьшить, уничтожить или расколоть на две черные дыры, хоть что с ней делай. Не кажется ли вам отчасти знакомой формулировка этого открытия Хокинга? Ну конечно же, это похоже на другой “второй закон” – второй закон термодинамики, тот самый, об энтропии.