Чтение онлайн

на главную - закладки

Жанры

Строение и история развития литосферы

Коллектив авторов

Шрифт:

Современная термическая структура получена для следующего временного шага (0 млн лет). Профиль рассчитанного теплового потока на поверхности повторяет изгиб изотерм (см. рис. 2). Он достигает максимальных значений 65–67 мВт/м2 в интервалах L=500–700 км и приурочен к выступам гранитно-метаморфических пород, кровля которых по сейсмическим данным расположена на глубине 4–6 км под поверхностью дна. Полученный по результатам моделирования фоновый тепловой поток составляет 54 мВт/м2. Это значение оценивается путем осреднения рассчитанных по профилю тепловых потоков (Хуторской, 1996).

На трансбаренцевском геотраверсе «Ковдор-ГСЗ-76» репером для сравнения наблюденных и «модельных» значений теплового потока являются результаты

геотермических измерений по скважине СГ-3 в Печенгской мульде и по скважинам на островах Баренцева моря. Измерение в СГ-3 проведено высокоточной аппаратурой в условиях равновесных (выстоявшихся) температур в стволе скважины, неоднократно повторялось и сопровождалось измерениями в «скважинах-спутниках» (Березин, Попов, 1988; Милановский и др., 1986). Это позволяет говорить о том, что полученное в этой скважине значение теплового потока может являться реперным, и с ним следует сравнивать результаты «модельного» расчета геотермического поля на юго-западном конце профиля. Значение теплового потока, измеренное в верхних 7 км ствола скважины, составляет 38–40 мВт/м2. Ниже 7 км наблюдается постепенное увеличение измеренного теплового потока до 50–55 мВт/м2. Эти значения считаются адекватными глубинному фоновому тепловому потоку, а некоторое его понижение в верхней части разреза интерпретаторы связывают с изменением гидродинамической обстановки в скважине в большей степени и с влиянием палеоклиматических колебаний в меньшей степени. Таким образом, полученные нами «модельные» значения теплового потока вблизи поверхности хорошо согласуются с оценками фонового теплового потока в скважине СГ-3. Заметим, что подобные же величины потока характеризуют весь клин континентальной коры. Отсюда следует, что если нами использован правдоподобный структурный и теплофизический разрезы, то и значения глубинного теплового потока вдоль профиля близки к истинным.

Совпадение полученных из моделирования значений теплового потока и измерений отмечается также для скважин на о-ве Колгуев, где в скв. Бугринская и Песчаноозерская-3 получены тепловые потоки 44–48 мВт/м2, а в скв. Песчаноозерская-1 – 52 мВт/м2 (Цыбуля, Левашкевич, 1992). Хотя эти скважины лежат вне профиля наших исследований, полученные данные говорят о правильной оценке фонового теплового потока.

Таким образом, фоновый тепловой поток на акватории Баренцева моря выше, чем тепловой поток, характеризующий докембрийские структуры Балтийского щита. Это объясняется более молодыми (рифейско-палеозойскими) термическими источниками рифтогенной природы под акваторией по сравнению со смежными участками суши и следовательно, более поздним прекращением активных тектонических и термических процессов.

Вдоль семи новых профилей, построенных по данным глубокого бурения и сейсмопрофилирования, расположение которых показано на рис. 4, было проведено моделирование нестационарного теплового поля с целью расчета глубинных температур и тепловых потоков. Это следующий этап моделирования, результаты которого мы можем сравнить с результатами, полученными на первом этапе.

Рис. 4. Карта расположения исследованных сейсмо-геологических геотраверсов.

Геотраверсы проходили через скважины, где проводились кондиционные определения теплового потока. Это позволило корректно задать краевые условия второго рода на нижней границе для каждого из профилей.

В геологическом строении осадочного чехла Баренцевоморского региона участвуют отложения широкого возрастного диапазона: от венд (?) – кембрийских до кайнозойских. Для непосредственного изучения докайнозойские отложения доступны преимущественно по периферии Баренцевоморского шельфа – на островах и приморских территориях, а также в немногочисленных опорно-параметрических (на островах) и морских поисково-разведочных скважинах российского сектора Баренцева моря. В норвежском секторе (часть акватории, расположенная западнее профиля 4–4) изученность бурением

и сейсморазведкой значительно выше.

Представленные геологические разрезы (рис. 5–9) составлены на основании данных сейсморазведки МОВ-ОГТ, проведенной в разные годы ОАО МАГЭ; результатов бурения скважин, выполненных в российском секторе ФГУП АМНГР, а также опубликованных данных изучения скважин норвежского сектора. Сухопутные части профилей составлены по результатам геолого-съемочных работ, выполненных ранее геологами ВНИИОкеангеологии и ПМГРЭ.

Рис. 5. Геолого-геотермический разрез по профилю 1–1 (а) (изолинии, °С).

Разрезы пересекают основные тектонические элементы Баренцевоморского сектора и в региональном плане характеризуют строение осадочного чехла. Максимальные мощности отложений фиксируются в Южно-Баренцевской впадине, где они предположительно составляют около 18 км (профили 1–1, 2–2, 3–3, 7–7), минимальные – в западных частях региона – в норвежском секторе (профили 1–1, 2–2). Профиль 4–4 в меридиональном направлении пересекает зону Центрально-Баренцевских поднятий, разделенных прогибами, открывающимися в сторону Южно-Баренцевской впадины.

Часть разреза, включающая меловые, юрские, верхне-, средне– и частично нижнетриасовые отложения оказалась редуцирована в норвежском секторе, в результате позднемелового(?) – эоценового аплифта. Наиболее полные разрезы мезозоя отмечаются в депоцентрах Баренцевоморского мегабассейна: в Южно– и Северо-Баренцевских впадинах. Здесь снизу вверх по данным МОВ-ОГТ предполагается развитие глубоководных отложений ордовика-силура, девона, карбона и нижней перми, которые выше по разрезу сменяются преимущественно терригенными отложениями верхней перми, триаса, юры, мела и неоген-кайнозоя.

По данным исследования скважин мезозойская часть разреза характеризуется сменой по разрезу трансгрессивных и регрессивных последовательностей отложений. Максимум трансгрессии приходится на позднеюрское время, когда в разрезе формировалась толща так называемых «черных глин» (Устинов, Покровская, 1994). Самая глубокая скважина в этой части региона (Арктическая-1) остановлена на глубине 4524 м в отложениях ладинского яруса среднего триаса.

В бортовых частях Южно-Баренцевской впадины (скважины Мурманской площади) происходит существенное уменьшение мощностей триасовых и более древних отложений и выпадение из разреза отложений верхнего мела. По данным МОВ-ОГТ здесь предполагается развитие карбонатных отложений нижней перми, карбона и верхнего девона (профиль 7–7), аналогичных разрезам севера Тимано-Печорской плиты. В Печорском море палеозойские отложения вскрыты поисковым и разведочным бурением. Непосредственно вблизи линии профиля 3–3 находятся скважины Северо-Гуляевского и Приразломного месторождений. Одна из скважин Приразломного месторождения прошла осадочный чехол до глубины 4500 м и на забое вскрыла отложения самых низов нижнего девона. Установлено, что палеозойские отложения Печорского моря, содержащие основной по продуктивности каменноугольно-нижнепермский нефтегазоносный комплекс, имеют большое сходство с разрезами сухопутной части провинции (Государственная…, 2003).

Профили 5–5 и 6–6 расположены в самой северной части Баренцевоморского мегабассейна и пересекают острова арх. Земля Франца-Иосифа и прилегающую акваторию. Разрезы построены по данным геологических съемок и опираются на результаты бурения трех глубоких скважин на архипелаге Земля Франца-Иосифа (Нагурская, Северная, Хейса), по данным которых наблюдаются резкие изменения мощностей отложений и отсутствие на большей части архипелага отложений моложе триасовых. Разрез триасовых отложений насыщен интрузивными образованиями, которые отчетливо фиксируются как в разрезах скважин, так и на профилях МОВ-ОГТ. Ниже триаса, в разрезе Нагурской скважины, установлены верхнекаменноугольные отложения, но в прогибах, там, где общие мощности увеличиваются до 6 км, предполагается развитие полных разрезов перми, карбона, девона и силура. В акваториальной части разрезов по данным МОВ-ОГТ предполагается также существование юрских и меловых отложений.

Поделиться:
Популярные книги

Город Богов 3

Парсиев Дмитрий
3. Профсоюз водителей грузовых драконов
Фантастика:
юмористическое фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Город Богов 3

Амазония

Роллинс Джеймс
101. Книга-загадка, книга-бестселлер
Приключения:
прочие приключения
9.34
рейтинг книги
Амазония

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

Владеющий

Злобин Михаил
2. Пророк Дьявола
Фантастика:
фэнтези
8.50
рейтинг книги
Владеющий

Под маской, или Страшилка в академии магии

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.78
рейтинг книги
Под маской, или Страшилка в академии магии

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Служанка. Второй шанс для дракона

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Служанка. Второй шанс для дракона

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Студент из прошлого тысячелетия

Еслер Андрей
2. Соприкосновение миров
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Студент из прошлого тысячелетия

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

Неудержимый. Книга XXII

Боярский Андрей
22. Неудержимый
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Неудержимый. Книга XXII