Чтение онлайн

на главную - закладки

Жанры

Строение и история развития литосферы

Коллектив авторов

Шрифт:

Строение Южно-Карской впадины изучено сейсмическими работами МОВ и МПВ, а также гравимагнитными методами. Результаты этих работ показывают, что впадина представляет собой рифтогенный бассейн мезозойского возраста с заметно утоненной континентальной корой (до 26–30 км) и резко дифференцированной структурой поверхности фундамента. Крупнейшие разломы имеют явно выраженный листрический облик, а амплитуда смещений по ним достигает 3–6 км (Боголепов и др., 2000). Основные тектонические элементы рифтовой системы сформированы в результате последовательного отрыва крупных клиновидных блоков и пластин консолидированной коры по зонам разломов, выполаживающимся и затухающим в нижнекоровом слое. Растяжение земной коры в Южно-Карской впадине составляет около 20 %, что близко к значениям растяжения в рифтогенных Восточно-Баренцевском прогибе и Североморской впадине. Геодинамический режим растяжения всегда сопровождается повышением температур

и теплового потока. Именно такой характер геотермического поля наблюдается нами в Южно-Карской впадине.

Южно-Карский седиментационный бассейн, являющийся подводным замыканием Западно-Сибирского мегабассейна, по углеводородному потенциалу является крупнейшим на арктическом шельфе России. Все ресурсы углеводородов приурочены к мезозойским отложениям и представлены в подавляющей своей части газом.

Для описания структуры коры в Карском море были использованы 24 профиля, полученные как в результате глубинного сейсмического профилирования по длинным геотраверсам (10 профилей), так и в результате обработки информации по коротким профилям МОВ (14 профилей) (Поселов и др., 1996) (рис. 10). Вдоль каждого из них был выполнен расчет глубинных температур с помощью программного пакета «TERMGRAF»(рис. 11) (Подгорных и др., 2001). В качестве граничного условия на нижней границе задавался тепловой поток, измеренный в нескольких разведочных скважинах на акватории: (73–76 мВт/м2 – в западной части и 53 мВт/м2 – в восточной части, западнее арх. Арктического Института), у западного побережья п-ва Ямал (54–58 мВт/м2) и на о. Белый (54–59 мВт/м2). При расчете использовались значения теплофизических свойств слоев коры, адекватные установленным граничным скоростям (см. табл.1).

Рис. 10. Схема расположения профилей ГСП и их номера, а также точки измерений теплового потока в Карском регионе (мВт/м2).

Рис. 11. Сейсмический и геотермический разрезы вдоль профиля 434-1 в Карском море. 1 – сейсмические границы и значения граничных скоростей, км/с; 2 – изотермы, °С.

Современные знания о геологии шельфа Моря Лаптевых основаны на многоканальных сейсмических исследованиях, которые проводились силами Морской Арктической геологической экспедиции (МАГЭ) в 1986–1990 гг., Московской Лабораторией региональной геодинамики (ЛАРГЕ) в 1989 г. и совместной Российско-Германской экспедицией в 1993–1994 гг. Эти данные позволили проследить структуру рифтовой системы Хребта Гаккеля в осадочном чехле шельфа и разработать сейсмостратиграфическую схему для Моря Лаптевых и для северо-западной части Восточно-Сибирского моря. В шельфовой части этих морей не проводились измерения теплового потока, поэтому при моделировании геотермического поля вдоль профилей в шельфовой части Моря Лаптевых принимались фоновые значения теплового потока для Карского моря.

3. Термическое поле Амеразийского бассейна СЛО

В Северном Ледовитом океане на траверсе Моря Лаптевых и Восточно-Сибирского морей имеются измерения теплового потока, выполненные погружными термоградиентографами с дрейфующих льдов на Хребтах Гаккеля и Ломоносова, а также в Котловинах Подводников (более 40 измерений) (Любимова и др., 1973).

По программе Трансарктика в 1989–92 гг. и в 2000 г. в Амеразийском бассейне выполнены работы МПВ-ГСЗ по системе встречных и нагоняющих годографов на трех геотраверсах (два – субширотного направления и один – субмеридианальный) общей протяженностью 2300 км. Расстояние между регистраторами на геотраверсах «СЛО 89–91» (Де Лонга – Северный полюс) и «СЛО 92» (хребет Ломоносова) составляло 10 км, а на геотраверсе «Арктика 2000» через поднятие Менделеева – в 5 км. База наблюдений (длина годографа с информативной записью) достигала 200 км.

По результатам интерпретации данных МПВ-ГСЗ в полосе геотраверсов по мнению исследователей (Каминский и др., 2003) выявлена типичная для эталонной континентальной коры вертикальная и латеральная расслоенность коры и верхней мантии блока Амеразийского суббассейна, представленного поднятиями Ломоносова, Менделеева и разделяющей их Котловиной Подводников. Верхняя кора редуцирована и включает верхний градиентный слой со скоростями 5.8–6.7 км/с. Нижняя кора двухслойна и состоит из верхнего слоя со скоростями 6.8–7.2 км/с и нижнего коро-мантийного слоя со скоростями 7.4–7.7 км/с. Мантия представлена слоями М (7.9–8.1 км/с)

и N (8.4–9.0 км/с). Мощность земной коры в блоке изменяется от 22–23 км в Котловине Подводников до 25–26 км на хребте Ломоносова и 34 км на поднятии Менделеева. Эволюция литосферы палеоплатформенного блока Амеразийского бассейна связана скорее всего с деструкцией, ступенчатым обрушением и вулкано-тектонической активизацией.

Таким образом, западная часть Амеразийского бассейна в пределах Котловин Подводников имеет достаточную структурно-геологическую и геотермическую изученность для применения термотомографического метода. Непосредственно в котловинах имеется 15 измерений теплового потока (рис. 12) (значения в пределах 65–75 мВт/м2, однако, имеются две точки со значениями более 100 мВт/м2), выполненных с дрейфующих льдов в разные годы советскими и канадскими исследователями (Любимова и др., 1973, Judge, Jessop, 1978), а также сейсмические профили (геотраверсы), отработанные как с дрейфующих станций СП, так и в экспедициях на ледоколах.

Рис. 12. Расположение геотраверсов (пунктирные линии) и точек измерения теплового потока в районе Котловин Подводников.

Расчеты температур в литосфере, а также плотности теплового потока проведены вдоль сейсмических геотраверсов «СЛО-92», «АРКТИКА-2000» и «СЛО-8991».

На разрезах хорошо видно, что строение земной коры под Котловинами Подводников имеет очень сложный, неоднородный характер (рис. 13, 14). Мощность осадочного чехла изменяется от 5 км (Котловина Подводников I) до 1 км (Котловина Подводников II). Соответственно, температура на подошве слоя неконсолидированных осадков в пределах Котловин уменьшается в северном направлении от 250 до 150°С. Мощность складчатого комплекса редуцируется в северном направлении и в том же направлении уменьшается мощность консолидированной коры (предположительно, базальтового слоя) со скоростями от 6,0 до 7,8 км/с. Температура на подошве коры также уменьшается в северном направлении, что однозначно объясняется уменьшением глубины границы Мохо. Так в южной части Котловины Подводников I температура на границе Мохо составляет 750°С, а в северной части Котловины Подводников II – 700°С.

Заметим, что граница Мохо в Амеразийском бассейне не является изотермической, т. е. температура на ней зависит от мощности коры. Этот же результат был получен ранее практически для всех пассивных переходных зон Мирового океана, в отличие от активных конвергентных зон Западной Пацифики (Смирнов, Сугробов, 1980), где был сделан вывод об изотермической природе границы Мохо.

Рис. 13. Сейсмический (v, км/с) и геотермический (изолинии – Т,°С) разрезы вдоль профилей «СЛО-92» (А) и «Арктика-2000» (В). Крапом показана область фракционного плавления в мантии.

Рис. 14. Распределение температур (Т,°С) (А) и теплового потока (мВт/м2) (Б) вдоль профиля «СЛО-8991».

В верхней мантии, в пределах твердой литосферы температура нарастает от 700–750°С до 1200°С на глубине 42–45 км. Кровля термической астеносферы, приуроченная к изотерме 1250°С с учетом РТ-условий для данной глубины, проявляется на глубине 50 км.

Таким образом, мы прогнозируем мощность литосферы под Котловинами Подводников равную 50 км. Это несколько меньшая мощность, чем у литосферы абиссальных котловин Мирового океана (70–80 км), но типичная для пассивных континентальных окраин атлантического типа. Именно такие оценки мощности литосферы были получены в Ангольской, Бразильской и Канарской континентальных окраинах при исследованиях теплового поля на трансатлантических геотраверсах (Подгорных, 1986). Полученные данные позволяют констатировать отсутствие новейшей тектономагматической активности в районе Котловин Подводников.

Анализ фонового теплового потока показал, что внутри литосферы Котловин Подводников он составляет 60–70 мВт/м2. Имеется тенденция некоторого увеличения фонового теплового потока вкрест простирания Котловины. Так, под Хребтом Менделеева он достигает 80 мВт/м2. Однако это вполне объяснимо влиянием структурно-теплофизических неоднородностей из-за пониженной теплопроводности неконсолидированных осадков Котловин по сравнению с обнажающимся складчатым комплексом Хребта Менделеева, обладающим более высокой теплопроводностью.

Поделиться:
Популярные книги

Город Богов 3

Парсиев Дмитрий
3. Профсоюз водителей грузовых драконов
Фантастика:
юмористическое фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Город Богов 3

Амазония

Роллинс Джеймс
101. Книга-загадка, книга-бестселлер
Приключения:
прочие приключения
9.34
рейтинг книги
Амазония

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

Владеющий

Злобин Михаил
2. Пророк Дьявола
Фантастика:
фэнтези
8.50
рейтинг книги
Владеющий

Под маской, или Страшилка в академии магии

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.78
рейтинг книги
Под маской, или Страшилка в академии магии

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Служанка. Второй шанс для дракона

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Служанка. Второй шанс для дракона

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Студент из прошлого тысячелетия

Еслер Андрей
2. Соприкосновение миров
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Студент из прошлого тысячелетия

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

Неудержимый. Книга XXII

Боярский Андрей
22. Неудержимый
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Неудержимый. Книга XXII