Строение Луны
Шрифт:
Для бурения покрова Луны и для доставки образцов лунного грунта в Советском Союзе в 1970–1976 гг. проведен запуск автоматических станций «Луна-16, -20 и -24».
«Луна-16» совершила посадку на Луну 20 сентября 1970 г. в Море Изобилия. «Луна-20» опустилась на Луну 21 февраля 1972 г. в материковом районе с трудным для посадки рельефом, возле кратера Аполлоний. Автоматическая станция «Луна-24» опустилась на Луну 18 августа 1976 г. в юго-восточном районе Моря Кризисов.
Места посадки автоматических станций «Луна-16, -20 и -24» были выбраны так, чтобы доставленная на Землю серия образцов могла бы помочь составить представление о характерном
Так, например, место отбора пробы станцией «Луна-24» расположено вблизи восьмикилометрового кратера метеорного происхождения, и выбросы из него должны присутствовать в образцах, доставленных «Луной-24».
Автоматические станции «Луна-16 и -20» имели одинаковые буровое оборудование и грунтозаборное устройство, позволившие им взять пробу лунного грунта с глубины до 35 см. Грунтозаборное устройство станции «Луна-24» обеспечило бурение и взятие пробы грунта с глубины до 2 м.
Грунтозаборное устройство автоматических станций «Луна-16 и -20» состояло из бурового станка; штанги, на которой он укреплен, и приводов, перемещающих штангу в вертикальном и горизонтальном направлениях. Рабочим органом станка служило буровое устройство, предназначенное для бурения и отбора керна в горных породах как твердых, так и рыхлых.
По окончании бурения пробоотборник извлекался из грунта и вводился вместе с образцом грунта в специальный контейнер автоматического герметического аппарата, возвращаемого на Землю.
Следует отметить, что, помимо решения главной задачи — отбора и доставки пробы грунта, автоматическое бурение на Луне позволяло провести оценку прочности пробуриваемого грунта. Так, например, процесс отбора пробы станцией «Луна-20» показал, что, несмотря на меньшую плотность грунта в месте бурения и однородность структуры доставленного на Землю керна, грунт на поверхности Луны выявил неоднородность своей прочности.
Одновременно с отбором образцов лунного грунта советскими автоматическими станциями привезли на Землю образцы лунных пород американские космонавты.
Наряду с фундаментальными исследованиями состава, происхождения и эволюции Луны доставленные образцы лунного грунта используются и для изучения их физико-механических характеристик.
Поскольку физико-механические характеристики обусловливаются не только строением покрова Луны но и условиями, в которых он находится, их изучение необходимо было провести в специальных установках обеспечивающих изоляцию от земной атмосферы и создание при испытаниях условий, моделирующих лунную среду.
Для изучения физико-механических свойств лунного грунта использовалась специальная приемная камера исследовательский бокс и универсальная камера ТОР-1 (рис. 19), позволившие определить комплекс характеристик грунта. В качестве примера на рис. 20 приведены результаты испытаний на пенетрацию лунного грунта и земных грунтов-аналогов.
Рис. 19. Общий вид измерительных узлов вакуумной универсальной установки ТОР-1, используемой для комплексных наземных измерений физико-механических характеристик лунного грунта. Стрелкой указано место, куда помещается образец грунта
Рис. 20.
1 — лунный грунт; 2 — андезито-базальтовый вулканический песок; 3 — молотый базальт; Не 20° — испытания в атмосфере гелия при нормальном давлении и температуре + 20 °C; Не 140° — испытания в атмосфере гелия при нормальном давлении и температуре + 140 °C; Vac — испытания в вакууме
Современное представление о реголите. Весь лунный шар покрыт рыхлым слоем раздробленных горных пород. Этот слой назван реголитом. Он сформировался в результате переработки коренных горных пород внешними (т. е. экзогенными) факторами. Главным экзогенным факторам, ответственным за формирование реголита, является метеоритная бомбардировка. Установлено, что в среднем масса твердых межпланетных частиц выпадающих на поверхность Луны, составляет 4 · 10–14 г/см2 · с. Метеоритная бомбардировка, сопровождающаяся ударно-взрывными явлениями, взрыхляет и перемешивает грунт Луны по глубине и по площади одновременно происходят физико-химические превращения частиц грунта, их переплавление, спекание, уплотнение. Уплотнению и спеканию способствует высокий вакуум, существующий у поверхности Луны.
На лунную поверхность оказывают влияние солнечная и галактическая корпускулярная радиация, а также солнечное электромагнитное излучение.
По современным представлениям Луна находится свыше 2–3 млрд. лет в тектоническом покое и, по-видимому, нет активных внутренних (эндогенных) факторов, которые могли бы существенно влиять на условия формирования и существования реголита. Поэтому равномерное действие на поверхность экзогенных факторов обусловило похожее строение и структуру реголита по всему лунному шару и в целом усреднило физико-механические характеристики лунного грунта. Это подтверждено прямыми экспериментами, проведенными на поверхности Луны. Наблюдавшееся различие в составе и цвете морского и материкового реголита связано с различием пород, их слагающих.
В последние годы установлено, что материковые районы Луны сложены в основном из анортозитов (основной породообразующий минерал — полевой шпат). Морские породы сложены преимущественно базальтовыми породами (их основные минералы: плагиоклазы, пироксены и ильменит). По своей химической природе и те и другие породы являются алюмосиликатами, но в базальте больше железа и магния, а в анортозитах — кальция и магния. Более темный цвет базальтов обусловливает и относительно темный цвет лунных морей. Толщина слоя реголита связана с временем возникновения, с размером, формой и количеством метеоритных кратеров, которые, по существу, перекрывают всю поверхность Луны.
Слой реголита может иметь толщину от нескольких сантиметров до десятков метров. Как правило, толщина слоя реголита увеличивается в местных понижениях и снижается на склонах кратеров и на вершинах гор. В отдельных случаях дно кратера может быть почти свободно от реголита.
Гранулометрический состав (т. е. количество частиц различного размера в определенном объеме) обусловливается действием противоположно направленных процессов, связанных с метеоритной бомбардировкой, процессов дробления горных пород и агрегации раздробленных частиц.