Сумма технологии
Шрифт:
Итак, физику мы переводим на язык математики, с математикой обращаемся по-математически, результат снова переводим на язык физики и получаем соответствие с действительностью (конечно, при условии, что все действия мы проводим, опираясь на «доброкачественную» физику и математику). Это, безусловно, упрощение, так как современная физика настолько «пропитана» математикой, что даже исходные положения физики содержат ее в изобилии.
Нам кажется, что из-за универсальности связей Природы эмпирическое знание всегда может быть только «неполным, неточным и ненадежным», по крайней мере при сопоставлении его с чистой математикой, которая «полна, точна и надежна». Следовательно, это неправда, что математика, используемая физикой или химией, чтобы объяснить окружающий мир, рассказывает об этом мире слишком мало, что этот мир «утекает» сквозь ее формулы, неспособные охватить его достаточно всесторонне. Скорее все обстоит наоборот. Математика говорит о мире (то есть старается говорить) больше, чем можно о нем сказать, и это в настоящее время приносит науке много беспокойств, которые, безусловно, будут в конце
Что, собственно говоря, значит «нематематичность» Природы? Мир можно трактовать двояко. Либо каждый элемент реальности имеет точный эквивалент (математический «двойник») в физической теории, либо же не имеет его (то есть не может иметь). Если для данного явления возможно создать теорию, которая не только предсказывает определенное конечное состояние явления, но также и все промежуточные состояния, причем на каждом этапе математических преобразований можно назвать материальный эквивалент соответствующего математического символа, то в этом случае можно говорить об изоморфизме теории и реальности. Тем самым математическая модель является «двойником» реальности. Такой постулат был свойствен классической физике, и от него повелось убеждение в «математичности Природы». [73]
73
Д. Бом, Квантовая теория, Судпромгиз, 1961.
Есть, однако, и другая возможность. Если мы метко выстрелим в летящую птицу и она упадет замертво, мы получим такой конечный результат действий, который был нам нужен. Однако траектории пули и птицы совсем не изоморфны. Они сходятся только в определенной точке, которую мы назовем «конечной». Точно так же теория может предвидеть конечное состояние явления, несмотря на то что порою отсутствует взаимооднозначное соответствие между элементами реального явления и математическими символами теории. Наш пример примитивен, но, может быть, это лучше, чем просто отсутствие примера. Физиков, убежденных в «двойниковом» отношении математики и мира, сегодня немного. Это никоим образом не означает, как я пытался пояснить на примере со стрелком, что от этого уменьшаются шансы предвидения. Просто мы подчеркиваем роль математики как орудия. Она перестает быть точным описанием, подвижной «фотографией» явления. Математика скорее становится чем-то вроде лестницы, по которой можно подняться на гору, хотя сама она вовсе не похожа на эту гору. Давайте останемся ненадолго возле этой горы. По фотографии горы можно, применяя соответствующий масштаб, определить ее высоту, падение склона и так далее. Лестница тоже может нам многое сказать о горе, к которой ее прислонили. Однако вопрос о том, что на горе соответствует перекладинам лестницы, не имеет смысла. Ведь они служат для того, чтобы добраться до вершины. Точно так же невозможно спрашивать о том, является ли эта лестница «истинной». Она лишь может быть лучшей или худшей как орудие достижения цели.
Но то же самое можно, собственно говоря, сказать и о фотографии горы. Эта фотография кажется нам точным образом горы. Однако, если мы будем рассматривать ее через все более сильные увеличительные стекла, подробности горного склона распадутся в конце концов на черные пятна зерен фотоэмульсии. Эти зерна в свою очередь состоят из молекул бромистого серебра. Соответствует ли отдельным молекулам что-либо однозначно на горном склоне? Нет. Вопрос о том, куда «девается» длина внутри атомного ядра, таков же, как и вопрос, куда «девается» гора, если мы рассматриваем ее фотографию под микроскопом. Фотография достоверна как единое целое – и точно так же как единое целое будет достоверна теория (например, квантов), которая позволит лучше предвидеть образование барионов и лептонов, а также скажет, какие еще частицы могут существовать, а какие – нет.
Реакцией на такие рассуждения может быть грустное заключение, что Природа непознаваема. Но это ужасное недоразумение. Автор этих строк когда-то втайне надеялся, что мезоны и нейтроны, «несмотря ни на что», окажутся в конце концов похожими на очень и очень маленькие капельки или шарики для пинг-понга. В таком случае они вели бы себя как биллиардные шары, то есть по законам классической механики. Признаюсь, теперь «пинг-понговость» мезонов изумила бы меня больше, чем то, что они не похожи на что-либо известное нам из нашего повседневного опыта. Если несуществующая еще теория нуклонов позволит управлять, например, звездными изменениями, я думаю, что это будет щедрым вознаграждением за «таинственность» тех же нуклонов, которая попросту означает, что мы не можем их себе наглядно представить.
На этом мы заканчиваем рассуждения о математичности или нематематичности Природы, чтобы вернуться к вопросам, касающимся будущего. Чистая математика до сих пор была складом «пустых структур», в которых физик искал чего-то, что «было бы к лицу Природе». Все прочее лежало целиной. Положение, однако, может измениться. Математика является послушной рабыней физики – рабыней, заслуживающей благодарность своей хозяйки постольку, поскольку она умеет подражать миру. Но математика может стать повелительницей физики – не современной, а «синтетической» физики очень отдаленного от нас будущего. До тех пор
Мы еще недостаточно подготовлены к рассмотрению той грядущей технологической революции, которую сегодня можно только вообразить. Мы снова вырвались вперед со слишком большой прытью. Теперь нам следует вернуться назад от пантокреатики к имитологии. Но вначале необходимо будет сказать два слова о систематике этих несуществующих предметов.
(f) Новый Линней, или О систематике
Сначала одно пояснение. Мы хотим заглянуть в будущее. Из-за этого мы вынуждены принять, что современная наука – это ничто по сравнению с наукой последующих тысячелетий. Может показаться, что, становясь на такую точку зрения, мы беззаботно и даже бесцеремонно пренебрегаем наукой двадцатого века. Это не так. Поскольку цивилизация существует уже свыше десяти тысяч лет, а мы, рискуя потерпеть полное фиаско, хотим домыслить, что же будет с ней по меньшей мере через такой же промежуток времени, то мы не можем признать вершиной ни одно из нынешних достижений науки. С той высоты, на которую мы должны взобраться, видно, что кибернетическая революция отошла всего лишь на шаг от технологической революции неолита, а неизвестный, анонимный «изобретатель» нуля – от Эйнштейна. Повторяю – «должны», «хотим», чтобы подчеркнуть этим, что иначе, то есть в другой перспективе, мы ничего в этом мысленном путешествии не получим. Можно было бы считать, что мы без всяких оснований узурпировали эту возвышающуюся над прошлым и настоящим точку зрения. Если бы я разделял такой взгляд, то должен был бы молчать.
Остается еще практическая трудность изложения. Мне придется последовательно говорить о вещах, которые следовало бы представлять одновременно. Ведь моя цель не в том, чтобы составить каталог «будущих открытий», а в том, чтобы указать общие возможности, не впадая в техническое «описательство» (которое было бы на самом деле пустой претензией), общие возможности, но не сводящиеся к общим местам, потому что они некоторым способом определяют образ будущего. Мы никогда не будем утверждать, что нечто произойдет так-то и так-то, мы лишь считаем, что оно может произойти так-то и так-то, ибо сей труд не фантастическое произведение, а совокупность в разной степени обоснованных гипотез. Эти гипотезы объединяются в единое целое, которое, однако, нельзя описать сразу. С такой же трудностью борется физиолог, желающий уместить в одном учебнике сведения о функциях организма. Он последовательно описывает работу органов дыхания, кровообращение, обмен веществ и так далее. Положение физиолога лучше, ибо учебники пишут издавна, а подразделение предмета, сколь бы оно ни было проблематичным, освящено традицией. Я же, как правило, пишу не о том, что существует, и не могу поэтому ссылаться (кроме редких исключений) на наглядные модели или на учебники, трактующие о будущем, ибо таковых я не знаю. По этим причинам я вынужден применять произвольную классификацию; в связи с этими трудностями я возвращаюсь к некоторым вопросам и проблемам по два и даже по три раза, а иногда даже рассматриваю по отдельности то, что мне следовало бы трактовать совместно с другими проблемами, но не удалось.
После этих оправданий я изложу «систематику предмета», призванную отныне служить нам путеводной нитью. Названия, которые я буду употреблять, носят рабочий характер: это лишь сокращения, которые облегчают обзор рассматриваемых отраслей, и ничего более. Поэтому слово «систематика» я поставил в кавычки. Все, что только может создать человек или иное разумное существо, мы охватываем названием «пантокреатика». С одной стороны, это получение информации, с другой – ее использование в определенных целях. Подобное деление существует в некоторой степени и сегодня, ему соответствует разграничение науки и технологии. В будущем это положение изменится в том отношении, что получение информации будет автоматизировано. Системы получения информации не будут определять направление действия; они подобны мельнице, изготовляющей муку; что из этой муки получится, это уж дело пекаря (то есть технолога). Однако какое зерно сыпать в мельничные жернова, решает не только и не столько пекарь, сколько управляющий мельницей; вот этим-то управляющим и будет наука. Сам процесс размола зерен – это добывание информации. Как можно себе представить такое добывание, об этом мы скажем отдельно.
Та часть пантокреатики, которая занимается использованием информации и которая возникла в результате синтеза общей теории физических и общей теории математических систем, делится на два раздела. Для краткости, а также некоторой наглядности первый из них назовем имитологией, а второй – фантомологией. Они частично перекрываются. Можно было бы, конечно, пуститься в уточнения; так, например, сказать, что имитология – это конструкторское искусство, опирающееся на такую математику, на такие алгоритмы, которые можно выделить из Природы, тогда как фантомология – это воплощение в действительность таких математических структур, которым в Природе ничто не соответствует. Но это предполагало бы, что Природа в основе своей математична, а мы таких постулатов принимать не хотим. Кроме того, это предполагало бы универсальность алгоритмизации, в высшей степени сомнительную. Поэтому благоразумней не форсировать наши формулировки.