Суперсила
Шрифт:
В случае слабого взаимодействия ситуация несколько иная. Радиус этого взаимодействия чрезвычайно мал. Поэтому переносчиками слабого взаимодействия должны быть частицы с большими массами покоя. Энергию, заключенную в такой массе, приходится “брать в долг” в соответствии с принципом неопределенности Гейзенберга, о котором уже шла речь на с. 50. Но поскольку “взятая в долг” масса (и, следовательно, энергия) столь велика, принцип неопределенности требует, чтобы срок погашения такого кредита был чрезвычайно коротким – всего лишь около 10^-28с. Столь короткоживущие частицы не успевают отойти особенно далеко, и радиус переносимого ими взаимодействия очень мал.
В действительности существуют два типа переносчиков слабого взаимодействия. Один из них во всем, кроме массы
Классификация частиц на кварки, лептоны и переносчики взаимодействий завершает перечень известных субатомных частиц. Каждая из названных частиц играет свою, но решающую роль в формировании Вселенной. Не будь частиц-переносчиков, не существовало бы и взаимодействий, и каждая частица осталась бы в неведении относительно своих партнеров. Не могли бы возникнуть сложные системы, любая деятельность была бы невозможна. Без кварков не было бы ни атомных ядер, ни солнечного света. Без лептонов не могли бы существовать атомы, не возникли бы химические структуры и сама жизнь.
Влиятельная британская газета “Гардиан” однажды опубликовала редакционную статью, в которой ставится под вопрос целесообразность развития физики элементарных частиц – дорогостоящего предприятия, которое поглощает не только заметную долю национального бюджета науки, но и львиную долю лучших умов. “Знают ли физики, что они делают? – вопрошала “Гардиан”. – Если даже знают, то какая от этого польза? Кому, кроме физиков, нужны все эти частицы?”.
Через несколько месяцев после этой публикации мне довелось присутствовать в Балтиморе на лекции Джорджа Киуорта, советника президента США по науке. Киуорт также обратился к физике элементарных частиц, но его лекция была выдержана в совершенно другом тоне. Американские физики были под впечатлением недавнего сообщения из ЦЕРНа, ведущей Европейской лаборатории по физике элементарных частиц, об открытии фундаментальных W– и Z-частиц, которые удалось, наконец, получить на большом протон-антипротонном ускорителе на встречных пучках (коллайдере). Американцы привыкли, что все сенсационные открытия совершаются в их лабораториях физики высоких энергий. Не является ли то, что они уступили пальму первенства, признаком научного и даже национального упадка?
У Киуорта не вызывало сомнений, что для процветания США вообще и американской экономики в частности необходимо, чтобы страна занимала передовые рубежи в научных исследованиях. Основные проекты фундаментальных исследований, заявил Киуорт, находятся на острие прогресса. Соединенные Штаты должны вернуть свое превосходство в области физики элементарных частиц,
На той же неделе по информационным каналам понеслись сообщения об американском проекте гигантского ускорителя, предназначенного для проведения нового поколения экспериментов по физике элементарных частиц. Основные затраты предусматривались в размере 2 млрд. долл., что делало этот ускоритель самой дорогой машиной из когда-либо построенных человеком. Этот гигант дядюшки Сэма, по сравнению с которым даже новый ускоритель ЦЕРНа ЛЭП покажется карликом, настолько велик, что внутри его кольца могло бы целиком разместиться государство Люксембург! Гигантские сверхпроводящие магниты предназначены для создания интенсивных магнитных полей, которые будут заворачивать пучок частиц, направляя его вдоль кольцевидной камеры; она представляет собой настолько огромное сооружение, что новый ускоритель предполагается разместить в пустыне. Хотелось бы знать, что думает по этому поводу редактор газеты “Гардиан”.
Известная под названием Сверхпроводящий суперколлайдер (Superconducting Super Collider, SSC), но чаще именуемая “де-зертрон” (от англ. desert — пустыня. —Ред.),
Что за крайняя нужда заставляет государства расходовать столь огромные ресурсы на все более разрушительное расщепление атома? Есть ли какая-нибудь практическая польза в таких исследованиях?
Любой большой науке, безусловно, не чужд дух борьбы за национальный приоритет. Здесь так же, как в искусстве или спорте, приятно завоевывать призы и мировое признание. Физика элементарных частиц стала своего рода символом государственной мощи. Если она развивается успешно и дает ощутимые результаты, то это свидетельствует о том, что наука, техника, равно как и экономика страны в целом, находятся в основном на должном уровне. Это поддерживает уверенность в высоком качестве продукции других отраслей технологии более общего назначения. Для создания ускорителя и всего сопутствующего оборудования требуется очень высокий уровень профессионализма. Накопленный при разработке новых технологий ценный опыт может оказать неожиданное и благотворное влияние на другие направления научных исследований. Например, научно-исследовательские разработки по сверхпроводящим магнитам, необходимым для “дезертрона”, проводятся в США на протяжении двадцати лет. Тем не менее они не приносят прямой выгоды и поэтому их трудно оценить. А нет ли каких-нибудь более ощутимых результатов?
В поддержку фундаментальных исследований иногда приходится слышать и другой аргумент. Физика, как правило, опережает технологию примерно на пятьдесят лет. Практическое применение того или иного научного открытия поначалу отнюдь не очевидно, однако лишь немногие из значительных достижений фундаментальной физики не нашли со временем практических приложений. Вспомним теорию электромагнетизма Максвелла: мог ли ее создатель предвидеть создание и успехи современных телекоммуникации и электроники? А слова Резерфорда о том, что ядерная энергия вряд ли когда-нибудь найдет практическое применение? Можно ли предсказать, к чему способно привести развитие физики элементарных частиц, какие удастся обнаружить новые силы и новые принципы, которые расширят наше понимание окружающего мира и дадут нам власть над более широким кругом физических явлений. А это может привести к развитию не менее революционных по своему характеру технологий, чем радио или ядерная энергетика.
Большинство разделов науки в конечном итоге находили и определенное военное применение. В этом отношении физика элементарных частиц (в отличие от ядерной физики) пока оставалась неприкосновенной. По случайному стечению обстоятельств лекция Киуорта совпала с рекламной шумихой вокруг предложенного президентом Рейганом спорного проекта создания противоракетного, так называемого пучкового, оружия (данный проект является частью программы, получившей название “Стратегическая оборонная инициатива”, СОИ). Суть этого проекта в использовании против ракет противника пучков частиц высокой энергии. Такое применение физики элементарных частиц выглядит поистине зловещим.
Преобладает мнение, что создание подобных устройств неосуществимо. Большинство ученых, работающих в области физики элементарных частиц, считают эти идеи абсурдными и противоестественными, резко высказываются против предложения президента. Осудив ученых, Киуорт призвал их “поразмыслить над тем, какую роль они могут сыграть” в реализации проекта пучкового оружия. Это обращение Киуорта к физикам (конечно, чисто случайно) последовало за его словами относительно финансирования физики высоких энергий.