Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Решающий шаг на пути к единой теории был сделан в конце 60-х годов. К тому времени теоретики добились невиданных успехов в применении квантовой теории к полям. Представление о поле возникло столетием раньше, успев доказать свою полезность в широком диапазоне практических приложений, в частности в радиотехнике. Соединение квантовой механики с электромагнитным полем привело непосредственно к квантовой электродинамике (КЭД), обладающей легендарными точностью и предсказательной силой.

Что касается трех остальных взаимодействий, то тут, к сожалению, нельзя было похвастаться аналогичными достижениями. Квантовая теория гравитации, в которой переносчиками гравитационного взаимодействия служат гравитоны, завязла в математических трудностях. Природа слабого взаимодействия по-прежнему оставалась

во многом непонятной. По поводу существования Z-частиц не было единого мнения, а описание с помощью обмена только W-частицами давало разумные результаты лишь в случае простейших процессов при низких энергиях. Еще менее понятной казалась природа сильного взаимодействия. К тому времени стало ясно, что все адроны, в частности протоны и нейтроны, вовсе не элементарные частицы, хотя теория кварков еще не имела прочного фундамента. Взаимодействие адронов выглядело очень сложным, но никто не знал, как моделировать внутреннюю структуру адронов, чтобы получить более простое описание.

Таким образом, в 60-е годы каждое из четырех взаимодействий описывалось своей теорией, и из них только одну, а именно КЭД, можно было считать во всех отношениях удовлетворительной. Теоретики стали размышлять, в чем же секрет КЭД. Какими особенностями электромагнитного поля, не свойственными другим силовым полям, обусловлен успех квантового описания? Если бы удалось выявить эти особенности, то теорию других взаимодействий можно было бы так видоизменить, чтобы включить в нее эти решающие факторы.

Оживший вакуум

Пустое пространство кажется не очень перспективным объектом для исследования, однако именно в нем скрыт ключ к полному пониманию существующих в природе взаимодействий. Вакуум довольно легко представить наглядно. Это область пространства, из которой удалено решительно все – частицы, поля, волны. Достичь абсолютного вакуума практически невозможно. Даже в космическом пространстве всегда присутствует остаток газа или плазмы, а также реликтовое фоновое излучение, оставшееся от Большого взрыва. Однако ничто не мешает нам рассматривать идеализированный вакуум.

Когда физики приступили к разработке квантовой теории поля, оказалось, что вакуум совсем не такой, каким его долгое время представляли, – это не пустое безжизненное пространство, лишенное вещества. Оказалось, что квантовая физика способна на “трюки” даже в отсутствие квантовых частиц.

Источник таких “трюков” – принцип неопределенности Гейзенберга, точнее его разновидность, относящаяся к энергии. В гл. 2 мы говорили о том, -что квантовые эффекты могут приостанавливать действие закона сохранения энергии на очень короткое время. В течение этого промежутка времени энергия может быть взята “взаймы” на различные цели, в том числе на рождение частиц. Разумеется, все возникающие при этом частицы будут короткоживущие, так как израсходованная на них энергия должна быть возвращена спустя ничтожную долю секунды. Тем не менее частицы могут возникнуть из ничего, обретя мимолетное бытие, прежде чем снова исчезнуть. И эту скоротечную деятельность невозможно предотвратить. Как бы мы ни старались опустошить пространство, в нем всегда будет присутствовать рой мимолетных частиц, возникновение которых “субсидируется” соотношением Гейзенберга. Эти частицы-призраки нельзя наблюдать, хотя они могут оставить следы своего кратковременного существования. Они представляют собой разновидность “виртуальных” частиц, аналогичных переносчикам взаимодействий, но не предназначенных для получения или передачи сигналов. Возникнув из пустоты, они снова превращаются в нее, являя собой наглядное доказательство существования силового поля и оставаясь при этом бесплотными призраками.

То, что казалось пустым пространством, в действительности кишит виртуальными частицами. Вакуум не безжизнен и безлик, а полон энергии. “Реальную” частицу, например электрон, всегда необходимо рассматривать на фоне этой непрерывной активности. Перемещаясь в пространстве, электрон в действительности оказывается в окружности частиц-призраков – виртуальных лептонов, кварков и переносчиков взаимодействий, – плутая в этой неразберихе. Своим присутствием он вносит возмущение в непрерывную активность

вакуума, которая в свою очередь оказывает воздействие на электрон. Даже в состоянии покоя электрон не знает покоя: со всех сторон его непрерывно штурмуют другие частицы, появившиеся из вакуума.

Если два электрона обмениваются фотоном, то это не что иное, как дополнительное возмущение в существовавшей ранее системе обменов. Описание взаимодействия частиц должно учитывать все эти дополнительные виртуальные кванты. В присутствии силовых полей полное состояние данной частицы включает процессы обмена двумя, тремя или большим числом частиц-посредников, которые взаимодействуют с частицами вакуума так, что исходная частица и частицы-посредники оказываются буквально облеплены виртуальными частицами. Происходит бесконечное количество взаимодействий, причем все в одно и то же мгновение.

На рис. 14 изображен сравнительно простой пример одного из процессов высокого порядка. Одна из частиц испускает виртуальный фотон, который затем порождает электрон-позитронную пару. Частицы этой пары в свою очередь обмениваются другим виртуальным фотоном, а затем аннигилируют, образую еще один виртуальный фотон, который поглощается второй частицей. Эта диаграмма может быть лишь частью еще более сложной диаграммы, в которой две исходные частицы существуют лишь в течение какого-то промежутка времени, после чего превращаются еще во что-нибудь.

Графическое изображение взаимодействия всех частиц имеет вид паутины со сложными переплетениями, отражающими многочисленные обмены между виртуальными частицами различных сортов. Силовое поле никогда не бывает статическим. В нем всегда присутствуют частицы-призраки, снующие туда-сюда, возникающие и исчезающие, вплетенные в трепещущую ткань энергии.

На первый взгляд кажется, что бесконечная сложность всего происходящего исключает всякую надежду на понимание характера взаимодействий между реальными частицами, не говоря уже о возможности вычислений. К счастью, это впечатление обманчиво. Оказывается – во всяком случае в КЭД, – что по мере усложнения процессов их влияние на реальные частицы ослабевает. В рассмотренном примере рассеяния электрона на электроне основной вклад обусловлен обменом одним фотоном. Остальные процессы приводят лишь к небольшим поправкам. Обычно при вычислениях, если не требуется необыкновенно высокая точность, редко приходится учитывать вклад более чем трех-четырех простейших диаграмм.

Представим себе, что в вакуум с его непрерывной активностью попадает новая частица. Ее мгновенно окутывает трепещущий покров энергии. Его нельзя наблюдать непосредственно, но представим себе, что у нас есть магический микроскоп, позволяющий обнаруживать любые виртуальные кванты. Взглянув в такой микроскоп, мы увидим “голую” частицу. Пусть это будет электрон. У внешнего края облака, окружающего частицу, снуют туда-сюда фотоны низкой энергии, зондируя пространство вокруг электрона, плутая в полупризрачном вакууме и сливаясь в заполняющее все пространство зыбкое море виртуальных квантов. По мере проникновения в облако, окружающее реальную частицу, возрастает энергия и активность виртуальных фотонов. Некоторые из фотонов время от времени превращаются в электрон-позитронные пары, которые вскоре вновь “сливаются” в фотон. Иногда происходит более сложный обмен, в котором участвует еще больше виртуальных частиц. Ближе к электрону облако буквально извергает энергию. Здесь фотоны перемешаны с более тяжелыми частицами; можно увидеть кварки, тяжелые лептоны и частицы – переносчики всевозможных взаимодействий.

Рис.14. Сложное взаимодействие двух частиц, обусловленное обменом виртуальным фотоном, который “по ходу дела” взаимодействует с другими виртуальными частицами.

Разглядывая открывающуюся в микроскоп картину под все большим увеличением, мы обнаружим, что по мере приближения к электрону энергия, заключенная в облаке, быстро и неограниченно возрастает. Это обстоятельство настораживает, ибо указывает на серьезный кризис.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Игра Кота 2

Прокофьев Роман Юрьевич
2. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
рпг
7.70
рейтинг книги
Игра Кота 2

Имперский Курьер. Том 4

Бо Вова
4. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 4

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Охота на попаданку. Бракованная жена

Герр Ольга
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Охота на попаданку. Бракованная жена

Прогулки с Бесом

Сокольников Лев Валентинович
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Прогулки с Бесом

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум

Жития Святых (все месяцы)

Ростовский Святитель Дмитрий
Религия и эзотерика:
религия
православие
христианство
5.00
рейтинг книги
Жития Святых (все месяцы)

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар