Чтение онлайн

на главную - закладки

Жанры

Свет во тьме. Черные дыры, Вселенная и мы
Шрифт:

В библейской истории сотворения мира раньше всего появился свет, и со светом пришел первый день. Это согласуется с научной историей сотворения мира, которая сложилась на сегодня: свет возникает с появлением времени – вначале во Вселенной появился огненный шар, большой взрыв света и материи.

Но почему свет так важен? В конце концов Вселенная состоит не только из света, но еще и из материи! Однако если вы копнете глубже, то обнаружите, что по сути на самом фундаментальном уровне все, что есть, – это свет и энергия. Из знаменитой формулы Эйнштейна

Е = mс 2

следует, что энергия (E) равна массе (m), умноженной на квадрат скорости света (c). Масса – это то же, что и энергия, а энергия – то же, что масса. В теории существует еще один вариант этого уравнения, а именно:

E = hv,

где

греческая буква v (“ню”) обозначает частоту света, а h – постоянную Планка – коэффициент, связывающий частоту света с энергией кванта. Это простейшее уравнение квантовой механики, основоположником которой был немецкий физик Макс Планк. Когда мы переходим к измерениям малых величин, например, к атомным масштабам, мы видим, что энергия в виде света может излучаться или поглощаться только определенными порциями, так называемыми световыми квантами.

Следовательно, сам свет – это энергия. Чем выше его частота, тем больше энергия. Материя и свет – формы энергии, и каждая из них может быть преобразована одна в другую.

Еще больше запутывает ситуацию то, что в некоторых случаях, как выяснил Эйнштейн, свет при высоких уровнях энергии ведет себя подобно частицам. В таких случаях мы говорим о фотонах, которые можно представить себе в виде несущихся сквозь пространство волновых пакетов, внутри которых свет продолжает колебаться.

Итак, и Ньютон, и Максвелл были правы: свет – это и частицы, и волны одновременно, – в зависимости от того, какой эффект вы исследуете. Ответ уже содержится в вопросе! Сегодня мы знаем, что этот корпускулярно-волновой дуализм распространяется и на самые крошечные компоненты материи. Подобно свету, эти мельчайшие частицы материи иногда могут вести себя как волны.

Даже силы, с которыми мы встречаемся в повседневной жизни, тесно связаны со светом. Атомы и молекулы удерживаются вместе с помощью квантовых и электромагнитных взаимодействий, то есть энергетических полей, которыми являются и световые поля. В квантовой механике объясняется, что все эти силы возникают при обмене виртуальными частицами света. Когда мы прикасаемся друг к другу или ударяем молотком по гвоздю, эти действия, если их рассматривать на микроуровне, также обусловлены электромагнитными взаимодействиями. Звуковые волны возникают, когда газ сжимается и волна давления проходит через воздух. Когда молекулы воздуха в газе встречаются и ударяются друг о друга, они обмениваются мельчайшими виртуальными частицами света. Все, что мы ощущаем, измеряем, воспринимаем или изменяем, в конечном счете зависит от свойств света. На самом мельчайшем атомном уровне все наши чувства – не только зрение, но и осязание, обоняние и вкус – зависят от обмена светом. По этой же причине никакая информация не может достичь нас со скоростью больше скорости света.

Таким образом, мы всегда все измеряем с помощью света (а для меня, например, существует только то, что я могу измерить). Если это утверждение верно, то мы можем сказать, что Вселенная без света вообще бы не существовала. Пространство и время, материя и наши ощущения – все они, по сути, ничто без света [37] .

Концепция важности измерений в определении понятия реальности пронизывает всю физику ХХ века. Но даже сегодня она представляется крайне революционной. Она – ключ как к теории относительности, так и к квантовой механике, поскольку и в квантовой физике основополагающей является та же самая идея: реальностью становится лишь то, что я измеряю. Все остальное – интерпретация, а интерпретация, особенно в квантовой физике, – это предмет серьезных споров [38] , как и вопрос о том, что на самом деле означает измерение. Измерение всегда связано с процессами, в которых частицы обмениваются друг с другом энергией и светом. Этот подход приводит к совершенно новым способам описания реальности. В квантовой физике частица может с определенной долей вероятности находиться одновременно везде – до тех пор, пока над ней не будет проведено измерение. Во мраке небытия все возможно до тех пор, пока кто-нибудь не прольет на эту тьму свет. Измерить, в частности, и значит – пролить свет на квантовый процесс. Но поскольку мы работаем в ареале мельчайших субатомных частиц, попытка измерить их всегда означает также воздействие на них, их изменение и фиксацию с помощью фотонов. Измерение не просто определяет реальность, оно еще и изменяет ее.

37

Термин свет использован здесь в более общем смысле и включает в себя все формы взаимодействия, которые в основном передаются со скоростью света. Пространство не имеет смысла в гипотетической вселенной, заполненной материей, которая никогда не взаимодействует. И тут возникает естественный вопрос: а что мы должны называть реальностью? Решения уравнений Эйнштейна существуют в пространстве-времени и без света и материи. Конечно, в этом случае пространство и время сводятся к чисто математическому понятию, которое можно описать термином ничто.

38

См. например: Philip Ball. Why the Many-Worlds Interpretation Has Many Problems. // Quanta Magazine, October 18, 2018. https://www.quantamagazine.org/why-the-many-worlds-interpretation-of-quantum-mechanics-has-many-problems-20181018; Robbert Dijkgraaf. There Are No Laws of Physics. There’s Only the Landscape. // Quanta Magazine, June 4, 2018. https://www.quanta magazine.org/there-are-no-laws-of-physics-theres-only-the-landscape-20180604.

Эрвин

Шрёдингер описал это с помощью своего знаменитого парадокса. Он представил кота в обувной коробке, закрытого там вместе с квантовым устройством-убийцей. До тех пор, пока никто не снимет крышку и не заглянет внутрь коробки, кот будет как бы одновременно и мертвым, и живым. Мысленный эксперимент Шрёдингера, конечно, несколько вводит в заблуждение, потому что кот в коробке из-под обуви – это не отдельный изолированный квантовый объект. Его частицы постоянно обмениваются виртуальными фотонами друг с другом, а также с полом и воздухом. Кот, таким образом, постоянно либо подвергается измерению, либо измеряет себя, и это фиксирует его состояние [39] . Причем случается это не только тогда, когда мы открываем крышку. Но, разумеется, это всего лишь мысленный эксперимент, не говоря уже о том, что сегодня никто не оставил бы бедного кота умирать в коробке – пускай даже гипотетически. У такого горе-экспериментатора сразу появились бы многочисленные проблемы с борцами за права животных, и это правильно!

39

Процесс, при котором информация о квантовых состояниях теряется при переходе их в макроскопические объекты, обычно описывается в рамках концепции декогерентности. Более полное и доступное изложение квантовой физики можно найти, например, в книге Claus Kiefer. Der Quantenkosmos: Von der zeitlosen Welt zum expandierenden Universum. // Frankfurt: S. Fischer. (2008).

Настоящий кот либо мертвый, либо живой, но он не может быть тем и другим одновременно. Однако если бы кот был одиноким электроном в пустом пространстве и другой материи поблизости не было бы, то предыдущее утверждение оказалось бы логически правильным. Электрон не был бы либо тут, либо там, а был бы с определенной – иногда исчезающе малой – вероятностью одновременно везде и нигде в пространстве. Только когда электронный кот попал бы под луч света и этот луч высветил бы его и тем самым зафиксировал в определенном месте, он уже не был бы – именно в этот момент времени! – размазан по всему пространству. Электроны могут проходить через две двери одновременно, но только до тех пор, пока вы не установите в одном из дверных проемов датчик, который будет регистрировать их прохождение, – вот тогда они будут проходить только через одну из дверей.

Итак, мы снова убеждаемся в поразительном, уникальном значении света. Свет создает реальность, поскольку он передает информацию. Даже понятия пространства и времени берут свое начало в свете и материи. Пространство и время – абстрактные понятия, которые становятся реальными только благодаря нашим действиям по отсчету времени или измерению пространства. Без часов нет времени, без эталонного метра нет пространства. Самым элементарным инструментом для измерения пространства-времени является свет. Только благодаря своей измеримости пространство приобретает физические характеристики, которые мы описываем в моделях и изображениях.

Однако если свет всегда движется с одной и той же скоростью относительно каждого наблюдателя, то для наблюдателя что-то должно меняться, а именно – должны меняться пространство и время. Альберт Эйнштейн смог продемонстрировать это с помощью простого мысленного эксперимента, из которого он сделал вывод, что пространство и время не являются абсолютными и неизменными величинами, каковыми их считал Ньютон. На самом деле они относительны, а единственной абсолютной величиной является скорость света [40] .

40

Причина, по которой физики говорят в этом контексте о скорости света, – чисто историческая. С точки зрения современной науки эту максимальную скорость можно было бы назвать “скоростью гравитации”, поскольку с этой скоростью распространяются гравитационные волны, или – еще лучше – “скоростью причинности”, то есть предельной скоростью распространения взаимодействий. В теории относительности скорость света – фундаментальная характеристика пространства-времени, устанавливающая естественное соотношение между пространственной и временной шкалами.

Если, например, ко мне приближается машина, то время в ее салоне течет иначе, чем там, где я стою! Это звучит странно, и это действительно странное утверждение, но такой вывод логически вытекает из того, что мы считаем скорость света постоянной.

Рассмотрим некоторые основные методы измерения времени. Механические наручные часы тикают с заданной частотой, которая определяется свойствами колесика-балансира. Регулярное тиканье часов отмеряет время – секунду за секундой. Чтобы узнать, сколько прошло времени, нам нужно лишь посчитать количество “тиков”. К счастью, минутная и часовая стрелки настолько добры, что считают их за нас, так что мы можем просто мельком взглянуть на циферблат и сразу увидеть, который час.

Поделиться:
Популярные книги

Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Клеванский Кирилл Сергеевич
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.51
рейтинг книги
Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Графиня Де Шарни

Дюма-отец Александр
Приключения:
исторические приключения
7.00
рейтинг книги
Графиня Де Шарни

Весь цикл «Десантник на престоле». Шесть книг

Ланцов Михаил Алексеевич
Десантник на престоле
Фантастика:
альтернативная история
8.38
рейтинг книги
Весь цикл «Десантник на престоле». Шесть книг

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Начальник милиции. Книга 4

Дамиров Рафаэль
4. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 4

Весь Карл Май в одном томе

Май Карл Фридрих
Приключения:
прочие приключения
5.00
рейтинг книги
Весь Карл Май в одном томе

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Я не Монте-Кристо

Тоцка Тала
Любовные романы:
современные любовные романы
5.57
рейтинг книги
Я не Монте-Кристо

Александр Агренев. Трилогия

Кулаков Алексей Иванович
Александр Агренев
Фантастика:
альтернативная история
9.17
рейтинг книги
Александр Агренев. Трилогия

Воин

Бубела Олег Николаевич
2. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.25
рейтинг книги
Воин

Газлайтер. Том 1

Володин Григорий
1. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 1

Архил...? 4

Кожевников Павел
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
5.50
рейтинг книги
Архил...? 4

Доктор 2

Афанасьев Семён
2. Доктор
Фантастика:
альтернативная история
5.00
рейтинг книги
Доктор 2