Свет во тьме. Черные дыры, Вселенная и мы
Шрифт:
Наша команда в Аризоне довольно велика, и все ее члены – участники научного сообщества EHT. Среди них Винсент Фиш из обсерватории Хейстек и Дэн Маррон из Аризоны. Я заменяю здесь Дэна, а он приглядывает за нами из Тусона. Для такой большой команды в обсерватории не хватает спальных мест, так что одновременно все мы тут быть не можем. С самого начала я чувствую себя на SMT как дома. Конечно, мне было известно, как этот телескоп выглядит и как он работает, но вести наблюдения самому – это совсем другое дело. Путь от детектирования радиоизлучения до создания изображения, которое можно было бы показать коллегам-астрономам, физикам и всему миру, долог. Но когда перед тобой раскрывается Вселенная – это совершенно особое ощущение.
Сначала
Следующий шаг – сохранение волн. Как ни удивительно, сегодня даже свет можно хранить в цифровом виде! Сначала волны следует опять отфильтровать, чтобы их частоты соответствовали гораздо более низким частотам наших приборов. Устройство Дэна Вертимера, предназначавшееся изначально для программ SETI, преобразует повторно отфильтрованные волны в биты и байты. Теперь свет из глубин космоса соответствует пиксельной последовательности виртуальных “башен” высотой ноль, один, два или три блока. Конечно, высота “башен” – это только очень грубая аппроксимация осцилляций радиоволн, но “башен”, как и зарегистрированных радиоволн, очень много.
Объем регистрируемых данных невероятен: 32 гигабайта в секунду, то есть 32 миллиарда нулей и единиц в секунду. Если рисовать на бумаге “башни”-данные линиями миллиметровой толщины, то примерно через две секунды нам уже потребовался бы рулон бумаги, достаточный, чтобы обернуть весь земной шар. К счастью, теперь бумажную перфоленту заменили жесткие диски. Числовая революция явно сыграла на руку проекту EHT.
После записи измерений жесткие диски отсылаются по почте для дальнейшей обработки в Бостон и Бонн. И когда длительный процесс обработки этого гигантского массива данных будет завершен, появится крошечный рисунок. А ведь это только предварительная работа с информацией! На самом деле мы регистрируем радиошум, идущий от неба, от наших приемников и – очень слабый – от края черной дыры. К счастью, большая часть радиошумов, источниками которых являются небо и приемник, могут быть отфильтрованы при последующей обработке. Вся энергия сигналов космического радиоисточника, собранных таким телескопом за одну ночь, невероятно мала. Она эквивалентна энергии, приобретенной волоском длиной в 1 миллиметр, падающим с высоты 1 миллиметр на стеклянную пластинку. Маловероятно, что после этого на стекле останется хотя бы царапинка, и тем не менее мы можем измерить воздействие такого удара.
Чтобы затем данные можно было точно совместить, каждый телескоп нуждается в абсолютно точных часах. Точные часы изготавливаются в Швейцарии, что известно как простым покупателям, так и физикам. В нашем случае речь идет не об обычных механических чудо-часах, а о невероятно точном хронометре эры атомной физики. Город Невшатель вблизи Берна – один из главных центров, где изготавливают такие приборы. Именно здесь выпускаются атомные часы, используемые в навигационной спутниковой системе “Галилей”, – европейской альтернативе американской GPS. Наши атомные часы тоже из Невшателя. Это часы на основе водородного мазера, цена которых начинается с пятизначного числа за штуку.
Если ты астроном и работаешь с телескопом, то есть один человек, связываться с которым тебе не рекомендуется.
При определенных измерениях оператор может передать виртуальный руль находящимся в комнате астрономам, но он немедленно заберет его обратно, если возникнут какие-то проблемы или дальнейшим наблюдениям помешает сильный ветер.
При РСДБ-экспериментах для каждого телескопа имеется четкое расписание, которого следует придерживаться. Теоретически это расписание должно соблюдаться автоматически, поскольку предполагается, что с точностью до доли секунды все телескопы в одно и то же время направлены на один и тот же радиоисточник. Чтобы предотвратить какие-либо недоразумения, связанные с часовыми поясами, используется всемирное время – время пояса, в котором находится давно превращенная в музей английская Гринвичская королевская обсерватория.
Проводя измерения, мы не только наблюдаем за центром нашей Галактики или центром галактики M87. Для определения чувствительности наших телескопов мы между сеансами вновь и вновь направляем их радиоантенны на калибровочные источники. Часто для этих целей используются хорошо известные квазары или галактики. Одна из таких галактик была открыта Гершелем в конце XVIII века. Она известна как 3C 84 и расположена в 240 миллионах световых лет от Млечного Пути в скоплении галактик в созвездии Персей. Галактика 3C 84 – надежный и сильный источник радиоизлучения.
Часто за время одной сессии пеленгуются координаты трех или четырех разных квазаров. Только таким образом можно откалибровать всю систему. Для РСДБ даже атомные часы недостаточно точны. Их приходится корректировать с помощью этих космических источников, и тогда постфактум можно убедиться, что все часы идут в унисон.
На то, чтобы изменить направление антенны, требуется несколько минут. Операторы в Аризоне придумали заполняющую это время “отбивку” [148] : всякий раз при повороте телескопа в диспетчерской и в кухне звучит бодренькая мелодия Classical Gas из австралийского кинофильма “Тарелка”. Это кинофильм о 64-метровой антенной тарелке телескопа обсерватории Паркс, принявшего данные прямой телевизионной трансляции при высадке человека на Луну. Те, кто наблюдал звезды или черные дыры на горе Грэм в Аризоне, никогда уже не смогут выбросить этот навязчивый мотив из головы.
148
Вероятно, идея использовать эту мелодию пришла в голову Бобу Моултону, но запрограммировал ее Том Фолкерс, написавший всю операционную систему для SMT.
Иногда дежурство на телескопе бывает выматывающим. Например, когда оказывается, что телескопы или приборы следует перенастроить. Атмосферная рефракция приводит к сдвигу видимого положения источников, а флуктуации температуры деформируют массивные антенны, что приводит к изменению направления их взора. Эти изменения минимальны, но заметны. Все источники ошибок следует выявить и устранить. Во время перерывов в наблюдениях необходимо регулярно корректировать “наведение” и фокусировку телескопа с помощью ярких калибровочных источников, большинство из которых – черные дыры. Бывает, что при плохой погоде нужный источник удается обнаружить не сразу, или мы его обнаруживаем, а затем опять теряем. Тогда, подобно человеку с биноклем, высматривающему что-то в сумерках, мы ищем этот источник до тех пор, пока не находим его.