Чтение онлайн

на главную - закладки

Жанры

Свет во тьме. Черные дыры, Вселенная и мы
Шрифт:

Все есть информация – материя, энергия и, возможно, даже черные дыры. И при этом одной из наиболее важных концепций является идея о том, что противоположно информации: отсутствие информации, беспорядок, или, на научном языке, энтропия. Суть в том, что такие концепции как свет и время, знание и невежество, случай и судьба – тесно связаны между собой.

Еще в конце XIX века австрийский ученый Людвиг Больцман занимался исследованием связи между термодинамическими величинами – такими как, например, теплота, давление, энергия, работа – и самыми маленькими частицами. Во времена Больцмана работу и энергию производили тепло и давление в паровых машинах. В паровой машине давление, приводящее в движение локомотив, создается за счет движения множества капелек водяного пара.

Частицы в бойлере похожи на играющих в надувном замке детей. Чем неистовее они скачут, тем сильнее сотрясается замок. Чем больше в замке прыгающих детей, тем сильнее давление на его стенки. Энергия и скорость отдельных детей соответствуют температуре в бойлере. В конце

праздника дети устают, и энергия начинает убывать. Надувной замок перестает трястись; бойлер охлаждается.

До того как запустить детей в замок, я разделил их на две группы. Вначале я рассадил в замке спокойных ребят в синих футболках. Прозвучал свисток, игра началась, и туда ворвались дикие спортивные ребята в красных футболках. Произошло несколько крупных, но по большей части бескровных столкновений. Когда внутрь замка влетела дикая орда и все дети в красных футболках дружно навалились на заднюю стенку сооружения, оно начало угрожающе раскачиваться. В этот момент состояние в основном еще упорядоченное и энтропия низкая. Однако поскольку замок полон детей, спокойные ребятишки тоже начинают прыгать – иначе их свалят с ног, а разбушевавшиеся “красные футболки” начинают прыгать медленнее – иначе они будут сталкиваться друг с другом. Обе группы перемешиваются, свалка становится общей, ребят все труднее разделить на группы спокойных и буйных. Физики описали бы это так: надувной замок пришел в состояние теплового равновесия, и, поскольку все перемешалось – синие и красные футболки мелькают повсюду, – энтропия выросла. Если ребята снимут футболки, никто не узнает, кто к какой группе изначально принадлежал.

Нечто похожее происходит и в паровой машине. Когда бойлер, наполненный горячим воздухом, соединяют с холодным бойлером, воздух из горячего бойлера перетекает в холодный, заставляя турбину двигаться. Если перестать подавать тепло, температура бойлеров сравняется, частички газа в каждом из них будут двигаться с одинаковой скоростью, воздух больше не будет течь в одном направлении и турбина остановится. Система достигла теплового равновесия: все частицы полностью перемешаны. Упорядоченная система – горячие частицы здесь, а холодные там – превратилась в неупорядоченную; энтропия возросла, и система больше не производит работы. Физики говорят, что система термализована, что означает – полностью перемешана. Имеется одна большая масса подобных частиц, единственная характеристика которых – общая для всех температура.

Можно сказать, что беспорядок всегда только увеличивается. Для молодых родителей это одно из наиболее важных открытий, но оно относится и к физике. Увеличение беспорядка – основополагающий принцип термодинамики, который справедлив как для любой замкнутой системы, так и для любой детской. Никто никогда не станет свидетелем того, как один из двух бойлеров с одинаковой температурой спонтанно станет горячим, а другой – холодным. Точно так же кубики в детской не разделятся по цветам самопроизвольно. Чтобы уменьшить энтропию, сперва надо всегда потратить энергию. Уборка – утомительное, требующее усилий дело.

Тем не менее даже коробка со сваленными в беспорядке кубиками разных цветов не достигает состояния с максимальным уровнем энтропии. Чтобы его достичь, все кубики надо, измельчив, разделить на составные элементы, которые в финале должны излучиться в виде диффузного инфракрасного излучения. Значит, даже если в детской беспорядок, ситуация всегда может стать еще хуже.

Нам повезло, что нашей Вселенной всего несколько миллиардов лет. Если бы мы жили в бесконечно старой Вселенной, то, несмотря на все наши усилия, в ней бы царил максимальный беспорядок и полный хаос. Больше не было бы ни галактик, ни звезд, ни частиц, ни черных дыр. Свет растянулся бы до бесконечности и практически погас. Вселенная была бы не более привлекательна, чем дым от погасшей на ветру свечи в пустыне. В этом смысле конечность Вселенной безусловно является необходимым условием нашего существования.

Любопытно, что понятие энтропии используется и в теории информации. Еще в 1948 году американский математик Клод Элвуд Шеннон показал, что для этого требуется только заменить игрушки в детской или частицы газа в бойлере на буквы. Возьмем страницу этой книги. Предположим, мы с вами играем в “испорченный телефон” и я тихо читаю эти строки моей соседке, которая – по памяти и тоже тихо – передает их своему соседу, а тот, в свою очередь, своему… Понятно, что чем длиннее цепочка, тем больше ошибок вкрадывается в переданные слова. То, что, как я надеюсь, хотя бы в некоторой мере является информативным текстом, постепенно превратится в непонятную тарабарщину. Если продолжать передавать информацию, не делая поправок, она теряется и беспорядок непрерывно нарастает. Горячая кастрюля алфавитного супа никогда, ни за какой разумный промежуток времени, не превратится во вразумительный текст [208] . Мозгу автора нужна энергия – например, в форме солнечной энергии, запасенной в шоколаде, – которую он целенаправленно использует, чтобы написать логически связный текст.

208

На самом деле, если бесконечно долго помешивать алфавитный суп в большой кастрюле, то можно случайно написать книгу. Но вот понять, что это уже случилось, будет практически невозможно. Вам просто

следует перестать помешивать точно в нужный момент, иначе книга немедленно исчезнет. Так что целесообразнее ее писать, а не ждать, пока она неожиданно появится.

Понятие энтропии можно распространить и на черные дыры. На самом деле черные дыры – величайшие уравнители и разрушители информации. В соответствии с законами Эйнштейна вся информация о свалившемся в черную дыру человеке – вся его история, его мысли, его внешний вид, его пол, его воспоминания – будет сведена к одному-единственному числу: его весу в тот момент, когда он выбывает из этой Вселенной. Это значит, что пять мешков с песком произведут на черную дыру большее впечатление, чем президент Соединенных Штатов.

Вся образованная черной дырой система полностью определяется ее массой и угловым моментом. В этом смысле, несмотря на свой исполинский размер, черные дыры – самые простые и самые незамысловатые объекты во Вселенной. Каждая клеточка дождевого червя несравнимо сложнее черной дыры.

Можно показать, что если температура черных дыр действительно равна температуре Хокинга, поверхность горизонта событий является мерой их энтропии. Поскольку, согласно теории Эйнштейна, черные дыры всегда могут только расти, их энтропия тоже может только возрастать, а полная информация – совокупная сложность Вселенной – должна уменьшаться. Если в какой-то момент исчезает человек или дождевой червяк, Вселенная теряет крошечную частичку своей истории. На Земле люди или червяки по крайней мере оставят по себе бренные тела, но если они исчезнут в черной дыре, информация будет потеряна безвозвратно.

Если Хокинг прав, черные дыры постепенно испаряются: их масса, размер и энтропия уменьшаются. Однако полная энтропия Вселенной уменьшаться не будет, поскольку испущенное излучение уносит энтропию с собой. Для человека, попавшего в ненасытную адскую утробу черной дыры и уменьшившегося до размеров точки, это, в конечном счете, означает, что он будет расщеплен на отдельные мельчайшие составляющие и излучен черной дырой наружу во все части Вселенной. Правда, все его мысли тоже как-то оттуда выберутся, но они будут безнадежно перепутаны и беспорядочно смешаются с квантовыми состояниями статической вечной Вселенной. Если же допустить неограниченное расширение Вселенной, то они в конечном счете канут в небытие.

Таким образом, испарившаяся черная дыра должна напоминать перевернутый ящик с разноцветными кубиками – совершеннейший беспорядок. Но поскольку полная энтропия не меняется в результате испарения, то черные дыры уже изначально – совершеннейший беспорядок. И действительно: в настоящий момент практически вся энтропия Вселенной сосредоточена в черных дырах [209] .

Однако многие физики-теоретики не могут согласиться с потерей информации и говорят об информационном парадоксе черных дыр. Сохранение информации – неприкосновенный закон квантовой физики. Только при сохранении всей информации можно утверждать, что квантовая система развивается “законопослушно” и предсказуемо. В данный момент времени состояние невозмущенной, не измеренной, невидимой квантовой частицы однозначно определяется ее состоянием в предыдущий момент времени [210] . Таким образом, настоящее и будущее частицы прочно связаны. Уравнения квантовой механики обратимы: их можно решать в прямом и обратном направлениях и всегда с одним и тем же результатом. Однако в квантовой физике состояние частицы всегда можно описать только как меру вероятности, определяющей с относительной точностью значение одной характеристики частицы; остальные же характеристики остаются при этом неопределенными. В соответствии с принципом неопределенности Гейзенберга значения характеристик частицы никогда не могут быть измерены точно и каждое измерение, в свою очередь, может изменить состояние системы.

209

Ethan Siegel. Ask Ethan: What Was the Entropy of the Universe at the Big Bang? // Forbes, April 15, 2017. https://www.forbes.com/sites/startswithabang/2017/04/15/ask-ethan-what-was-the-entropy-of-the-universe-at-the-big-bang.

210

В квантовой физике сохранение информации в квантовой системе, т. е. развитие ее волновой функции, описывается термином унитарность, а процесс измерения называют коллапсом волновой функции. “Состояние” квантовой частицы и/или ее волновая функция только определяет вероятность получить определенное значение измеряемой величины. До каждого измерения характеристики квантовой частицы мы можем лишь определить наиболее вероятное значение интересующей нас величины – т. е. среднее значение по нескольким измерениям. Но когда какое-то значение измерено, оно остается неизменным до того, как будет измерено еще что-то. Таким образом, множественные измерения меняют значения характеристик частицы.

Поделиться:
Популярные книги

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Краш-тест для майора

Рам Янка
3. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
эро литература
6.25
рейтинг книги
Краш-тест для майора

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Печать Пожирателя

Соломенный Илья
1. Пожиратель
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Печать Пожирателя

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Запрети любить

Джейн Анна
1. Навсегда в моем сердце
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Запрети любить

На Ларэде

Кронос Александр
3. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На Ларэде

Третий. Том 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 4

Сочинения в трех томах. Том 1

Леблан Морис
Большая библиотека приключений и научной фантастики
Детективы:
классические детективы
5.00
рейтинг книги
Сочинения в трех томах. Том 1