Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных

на главную - закладки

Жанры

Поделиться:

Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных

Шрифт:

Введение в табличные данные и машинное обучение

В современном мире машинное обучение играет все большую и большую роль в повседневной жизни, бизнесе и научных исследованиях. Умение анализировать и использовать данные становится ключевым фактором успеха для организаций и профессионалов. Эта книга призвана стать вашим комплексным руководством по машинному обучению, особенно в отношении анализа табличных данных, которые являются наиболее распространенным типом данных в бизнесе.

Данная книга будет полезна как бизнесу, руководителям

проектов по машинному обучению, так и лицам, интересующимся машинным обучением. Она предоставляет широкий обзор методов и подходов, используемых для анализа и прогнозирования на основе табличных данных, включая классические алгоритмы машинного обучения, ансамблирование, автоматическое машинное обучение (AutoML) и применение нейронных сетей.

Книга разделена на несколько глав, каждая из которых посвящена определенному аспекту машинного обучения. Вы узнаете о предобработке данных, отборе признаков, разработке и валидации моделей, а также о внедрении и мониторинге решений на основе машинного обучения в реальной среде. Кроме того, в книге рассматриваются важные вопросы этики и соответствия законодательным требованиям в контексте машинного обучения.

Благодаря практическим примерам и пошаговым инструкциям, вы сможете глубже погрузиться в каждый этап разработки проекта машинного обучения и получить полезные навыки для своей карьеры или бизнеса. Независимо от вашего опыта или роли, вы найдете ответы на свои вопросы, а также полезные советы и рекомендации по применению машинного обучения в различных областях.

Мы надеемся, что эта книга станет вашим надежным спутником на пути к успешному освоению и применению машинного обучения, и поможет вам создавать инновационные и эффективные решения для вашего бизнеса, проектов и личного развития.

Книга предназначена для людей с разным уровнем опыта в области машинного обучения: от новичков до опытных профессионалов. В каждой главе представлены материалы как для начинающих, так и для более продвинутых читателей, что позволяет каждому найти подходящий для себя уровень сложности и глубину изложения.

Основы табличных данных

Табличные данные – это распространенный вид структурированных данных, представленных в виде таблицы, состоящей из строк и столбцов. Строки обычно соответствуют отдельным объектам или наблюдениям, а столбцы представляют различные переменные или характеристики объектов. Табличные данные могут содержать числовые значения, категориальные значения, текст, даты и другие типы информации.

Машинное обучение и его виды

Машинное обучение (МО) – это подраздел искусственного интеллекта, который позволяет компьютерам учиться и принимать решения без явного программирования. МО использует алгоритмы и статистические модели для анализа и обработки данных с целью делать предсказания или принимать определенные решения.

Методы машинного обучения и нейронные сети являются частями области искусственного интеллекта, но они имеют свои особенности и различия.

Методы

машинного обучения включают в себя широкий спектр алгоритмов, которые используются для обучения моделей на основе данных.

Выделяют три категории машинного обучения:

Обучение с учителем: модели обучаются на основе размеченных данных, где каждому объекту сопоставляется метка или значение. Примеры таких методов включают линейную регрессию, деревья решений и метод опорных векторов.

Обучение без учителя: модели обучаются на основе неразмеченных данных, и целью является выявление структуры или зависимостей в данных. Примеры таких методов включают кластеризацию и методы понижения размерности.

Обучение с подкреплением: модели обучаются на основе взаимодействия с окружающей средой, где они получают награды или штрафы за свои действия. Примеры таких методов включают Q-обучение и глубокое обучение с подкреплением.

Нейронные сети – являются подмножеством методов машинного обучения, которые имитируют структуру и функционирование биологических нейронных сетей. Они состоят из слоев нейронов, связанных синапсами, и обучаются путем оптимизации весов синапсов.

Синапсис в контексте искусственных нейронных сетей – это аналог биологического синапса, который служит связью между искусственными нейронами. В искусственных нейронных сетях синапсисы представлены в виде весов, которые обозначают силу связи между нейронами.

Когда сигнал передается от одного нейрона к другому через синапсис, он умножается на вес связи (величина синаптического веса). Веса могут быть положительными или отрицательными, что соответственно усиливает или ослабляет передаваемый сигнал. В процессе обучения нейронной сети веса синапсов оптимизируются для минимизации ошибки и улучшения производительности модели.

Синапсисы играют ключевую роль в передаче информации между нейронами и определении архитектуры и динамики нейронных сетей. Они позволяют нейронным сетям адаптироваться и обучаться на основе предоставленных данных, делая их мощным инструментом для решения сложных задач машинного обучения.

Нейронные сети могут быть использованы для решения задач обучения с учителем, обучения без учителя и обучения с подкреплением.

Основные отличия между методами машинного обучения и нейронными сетями:

Структура: Нейронные сети имеют иерархическую структуру слоев и нейронов, в то время как многие методы машинного обучения используют другие структуры, такие как деревья, графы или линейные модели.

Сложность: Нейронные сети обычно обладают большей сложностью и гибкостью, что позволяет им аппроксимировать более сложные функции и зависимости в данных. Однако, это также может привести к более длительному времени обучения и требовать больших вычислительных ресурсов.

Комментарии:
Популярные книги

Часовая башня

Щерба Наталья Васильевна
3. Часодеи
Фантастика:
фэнтези
9.43
рейтинг книги
Часовая башня

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Жена на пробу, или Хозяйка проклятого замка

Васина Илана
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Жена на пробу, или Хозяйка проклятого замка

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Восход. Солнцев. Книга I

Скабер Артемий
1. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга I

Инвестиго, из медика в маги

Рэд Илья
1. Инвестиго
Фантастика:
фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Инвестиго, из медика в маги

Надуй щеки!

Вишневский Сергей Викторович
1. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки!

Случайная свадьба (+ Бонус)

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Случайная свадьба (+ Бонус)

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Наследник 2

Шимохин Дмитрий
2. Старицкий
Фантастика:
попаданцы
альтернативная история
фэнтези
5.75
рейтинг книги
Наследник 2

Неучтенный. Дилогия

Муравьёв Константин Николаевич
Неучтенный
Фантастика:
боевая фантастика
попаданцы
7.98
рейтинг книги
Неучтенный. Дилогия

Светлая тьма. Советник

Шмаков Алексей Семенович
6. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Светлая тьма. Советник