TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security)
Шрифт:
На рис. 8.14 магистраль (область 0) включает маршрутизаторы А, В, С, F и G. К области 1 относятся маршрутизаторы В и D. Область 2 содержит маршрутизаторы С, E и F. Маршрутизаторы В, С и F являются маршрутизаторами грани, a G — маршрутизатором границы. Маршрутизатор В знает все о топологии области 1 и магистрали. Аналогично маршрутизаторы С и F имеют сведения об области 2 и магистрали.
Рис. 8.14. Маршрутизаторы и области в автономных системах
Магистраль должна быть
Виртуальную связь (virtual link) можно установить между двумя маршрутизаторами магистрали, имеющими интерфейсы в одной и той же области. Виртуальная связь трактуется как нечисловая связь "точка-точка". Мера стоимости виртуальной связи определяется общей стоимостью пути между двумя маршрутизаторами.
Как показано на рис. 8.15, когда потеряна связь между А и F, маршрутизатор F не будет более соединен с другим маршрутизатором посредством магистральной связи. Для восстановления целостности магистрали придется воспользоваться виртуальной связью F-E-C.
Рис. 8.15. Определение виртуальной связи
8.13.5 Маршрутизация через грань области OSPF
Маршрутизатор грани имеет все данные о топологии каждой из подключенных к нему областей. Кроме того, он знает и всю топологию магистрали, поскольку подключен к ней непосредственно.
8.13.6 Использование итоговой информации внутри области OSPF
Каждый маршрутизатор грани создает итоговую информацию об области и указывает другим маршрутизаторам магистрали, насколько далеко они расположены относительно сети его области. Это позволяет каждому маршрутизатору грани вычислять расстояние до точки назначения вне его собственной области и пересылать эти сведения внутрь собственной области.
Итоговая информация содержит сведения о сети, подсети или идентификатор суперсети, а также маску сети и расстояние от маршрутизатора до внешней сети.
Например, на рис. 8.16 маршрутизатору E нужно выбрать путь к сети M. Маршрутизатор E использует базу данных своей области для поиска расстояния dc и df до маршрутизаторов граней С и F. Каждый из них сообщает сведения о своем расстоянии mc и mf до сети M. Маршрутизатор E может сравнить dc+ mc и df+mf и выбрать кратчайший маршрут.
Рис 8.16. Маршрутизация между областями
Отметим, что маршрутизатор В может не беспокоиться о пересылке итоговых сведений о расстоянии в область 1. Существует только один путь из этой области и можно использовать единственный элемент, описывающий путь по умолчанию, который применим для всех внешних точек назначения. Если область
8.13.7 Точка назначения вне автономной области OSPF
Многие автономные системы соединены с Интернетом или другими автономными системами. Маршрутизаторы границ (boundary, не путать с гранями. — Прим. пер.) предоставляют информацию о расстоянии до сети, расположенной вне автономной системы.
В OSPF существует два типа метрик для внешнего расстояния. Тип 1 эквивалентен метрике состояния локальной связи. Метрика типа 2 служит для длинных расстояний — она измеряет величины в большом диапазоне. Используя аналогию, можно уподобить метрику типа 2 километражу по общенациональной карте автодорог, на которой расстояния измеряются в сотнях км, а метрику типа 1 — километражу по карте отдельной области, где расстояния измеряются в км.
На рис. 8.17 показаны два маршрута к внешней сети N. На таком расстоянии игнорируется метрика типа 1, а вычисления производятся по метрике типа 2 (будет выбран маршрут со значением этой метрики, равным 2).
Рис. 8.17. Выбор маршрута по метрике типа 2
Еще одной возможностью OSPF (специально предназначенной для провайдеров) является возможность маршрутизатора границы автономной системы работать в качестве сервера маршрутизации (route server) и предоставлять сведения, идентифицирующие другие маршрутизаторы границ. Такие сведения должны включать:
Точку назначения, Метрику, Используемый маршрутизатор границы
8.13.8 Протокол OSPF
Теперь мы готовы описать некоторые внутренние свойства протокола OSPF. Каждый маршрутизатор OSPF обслуживает подробную базу данных с информацией для создания дерева маршрутизации области. Например, в базе данных отражены:
■ Каждый интерфейс маршрутизатора, соединения и связанные с ними метрики
■ Каждая сеть с множественным доступом и список всех маршрутизаторов такой сети
Как маршрутизатор получает эту информацию? Он начинает исследование с поиска своих ближайших соседей, используя для этого сообщения Hello.
8.13.9 Сообщения Hello
Каждый маршрутизатор OSPF конфигурируется с уникальным идентификатором, использующимся в сообщениях. Обычно в качестве идентификатора применяют наименьшую часть IP-адреса этого маршрутизатора.
Маршрутизатор периодически отправляет в многоадресной рассылке сообщение Hello! (Привет!) в сети с множественным доступом (например, локальные сети Ethernet, Token-Ring или FDDI), чтобы другие маршрутизаторы смогли узнать о его активности. Это же сообщение посылается на другие концы подключенных линий "точка-точка" или виртуальных цепей, чтобы партнеры по этим связям смогли узнать о рабочем состоянии маршрутизатора.