Чтение онлайн

на главную - закладки

Жанры

Телескоп во льдах. Как на Южном полюсе рождалась новая астрономия
Шрифт:

Это были первые дни физики элементарных частиц. Странные новые создания появлялись почти каждый год, в основном благодаря инструментам по изучению космических лучей, расположенным на горных вершинах. Их классифицировали по группам, и постепенно ученые начали формулировать новые правила их поведения.

В 1945-м – в том же году, когда Понтекорво изобрел свой метод выявления, – теоретики Абрахам Пайс и Кристиан Мёллер придумали термин «лептон», от греческого слова lep («легкий»). Это позволило им дать характеристику самым легким из известных частиц – электрону и нейтрино. Помимо сравнительно небольшого веса (в то время считалось, что нейтрино вообще не имеет веса), лептоны также отличались от нуклонов тем, что на них никак не влияло сильное ядерное взаимодействие;

они были подвержены лишь слабому.

Одно из первых новых правил было связано с понятием «сохранение лептонов». Давайте внимательнее рассмотрим процесс бета-распада, позволивший Паули выдвинуть идею нейтрино. Когда нестабильное ядро углерода-14 преобразуется в ядро азота-14, нейтрон превращается в протон и возникает лептон в виде электрона. Поскольку раньше в этой картине не было лептонов, принцип сохранения лептонов предполагает, что нейтрино, возникающее вместе с электроном, должно иметь форму антилептона или антинейтрино. Поэтому нейтрино, придуманное Паули, фактически представляло собой античастицу. А поскольку именно эта форма бета-распада имеет место в ядерных реакторах, эти последние испускают античастицы, причем в больших количествах.

Нейтрон, меняющийся на протон в изначальной форме бета-распада. До начала распада нет никаких лептонов и никакого электрического заряда. После распада отрицательный заряд электрона компенсирует положительный заряд протона, электронное антинейтрино компенсирует и количество лептонов, и аромат (флейвор) электрона.

Теперь, на первый взгляд, может показаться, что предложенный Понтекорво метод выявления не должен был принимать во внимание наличие античастиц. В его схеме стабильное ядро хлора-37, имевшее 17 протонов и 20 нейтронов, превращалось в радиоактивное ядро аргона-37 с 18 протонами и 19 нейтронами: один нейтрон превратился в протон. При сохранении электрического заряда создание этого протона должно сопровождаться созданием электрона, а поскольку электрон представляет собой материю, а не антиматерию, то и частица, начавшая реакцию, также должна быть материей, а именно нейтрино. Поскольку Солнце излучает нейтрино, метод Понтекорво должен был регистрировать их. Однако именно здесь на сцене появляется запутанная гипотеза Этторе Майораны. Если великий инквизитор был прав, значит, нейтрино и антинейтрино идентичны, а метод Понтекорво должен регистрировать обе частицы.

В 1945 году, через несколько месяцев после окончания войны, семья Понтекорво переехала в Чок-Ривер, чтобы быть ближе к реакторному комплексу – новому месту работы отца семейства. Примерно в это же время три итальянских ученых, работавших над своими секретными проектами, рассказали Понтекорво потрясающие новости о мюоне, и интерес Понтекорво достиг своего апогея. «Эта частица показалась мне по-настоящему интригующей, – вспоминал он в Париже много лет спустя. – Я почувствовал дуновение антидогматического ветра и принялся задавать множество вопросов»113. Понтекорво вместе с канадским физиком Э. П. «Тэдом» Хинксом организовал в Чок-Ривер лабораторию по изучению космических лучей, и в течение следующих нескольких лет они сделали ряд открытий, которые позволили Понтекорво получить ответы на все его вопросы – и не только114.

В результате оказалось, что мюон представлял собой третий лептон. Он имел тот же заряд и тот же спин, что и электрон. На него таким же образом влияет слабое, а не сильное взаимодействие; фактически он имеет настолько много общего со своим более легким родственником, что его часто описывают как «тяжелый электрон». Мюон нестабилен, имеет срок жизни 2,2 миллионных секунды, а затем распадается на электрон и две другие частицы. Понтекорво правильно догадался, что на раннем этапе этой игры в процесс будут вовлечены нейтрино и антинейтрино, и это помогло ему сделать еще одну мудрую догадку: нейтрино должно иметь при себе некое «удостоверение», связанное либо с мюоном, либо с электроном. «Для людей, работавших с мюонами в прежние времена, – вспоминал он в Париже, – вопрос относительно различных типов нейтрино никогда не терял

своей актуальности»115.

Если каждый мюон, представляющий собой лептон, распадается на три лептона, одним из которых являлся электрон, то сохранение лептонов предполагает, что две другие частицы должны отменить взаимное влияние друг друга: они должны представлять собой лептон и антилептон – иными словами, нейтрино и антинейтрино. Однако когда частица и ее античастица оказываются в тесной близости друг к другу, они обычно аннигилируют и дают жизнь новым частицам. Поскольку Понтекорво и Хинкс обнаружили, что два незаряженных продукта распада мюона не аннигилируют, то Понтекорво пришел к выводу о том, что у них должно иметься некое пока не известное качество, и оно должно быть каким-то образом связано с различием между мюоном и электроном.

Давайте продолжим этот ход размышлений: для сохранения «мюонности», известной в наши дни под названием «аромата» мюона, новое нейтрино должно быть мюонным, а для сохранения аромата электрона, равного до распада нулю, антинейтрино, созданное в связке с новым электроном, должно быть электронным. И теперь мы можем сказать, что именно это предвидел Вольфганг Паули еще в 1930 году: поскольку электрон создается в изначальной форме бета-распада, соответствующее ему нейтрино должно быть электронным антинейтрино.

Мюон распадается на три частицы. До распада имеется один лептон с ароматом мюона и отрицательным электрическим зарядом. После распада электрон несет электрический заряд, мюонное нейтрино – аромат мюона, а электронное антинейтрино компенсирует аромат электрона и количество лептонов. Таким образом, сохраняются число лептонов, аромат лептонов и электрический заряд.

А теперь вернемся обратно на землю (или, скажем точнее, на антарктический лед). Судя по всему, аромат имеет важное значение для нейтринной астрономии. Мюонное нейтрино может инициировать бета-распад точно так же, как и его электронный родственник, с одним важным отличием, позволяющим родиться именно мюону, а не электрону. Представляется, что выявить мюон проще, поскольку он проникает сквозь лед легче, чем электрон. Выявление мюона было основным принципом работы Антарктического массива мюонно-нейтринных детекторов (проект AMANDA) и до сих пор остается хлебом насущным для IceCube. Мюон – это рабочая лошадка нейтринной астрономии.

В 1947 году, пока Понтекорво и Хинкс все еще занимались своими исследованиями, следы новой частицы (пиона) были обнаружены на фотоэмульсии, проявленной на вершинах гор в Пиренеях и Боливийских Андах. Ученые вскоре поняли не только то, что это – частица, существование которой предсказал Юкава, но и то, что пион превращается в мюон, – это позволяло объяснять, почему на более низких высотах обнаруживалась лишь последняя из этих двух частиц.

Пион также играет ключевую роль как в нейтринной астрономии, так и в экспериментальной физике нейтрино, поскольку он обеспечивает самый очевидный механизм создания высокоэнергетических нейтрино в ускорителях частиц – как рукотворных, так и космических. Когда протон ускоряется в электромагнитном поле, на Земле или в космосе, а затем сталкивается с какой-то другой частицей, такой как фотон или ядро атома, то в результате рождается пион.

Если этот пион не имеет заряда, он распадется на два гамма-луча (фотона). Если же он заряжен, то он может распасться одним из двух путей: либо на мюон и мюонное нейтрино, либо на электрон и электронное нейтрино. Поэтому мы вполне можем создать «нейтринную фабрику» на Земле. Для этого нам нужно каким-то образом направить рукотворный протонный пучок на цель или «поглотитель пучка», создающий пионы, а затем манипулировать заряженным пучком пионов и продуктами его распада так, чтобы создать чистый пучок нейтрино. Предполагается, что космические ускорители, такие как звездные скопления с активным ядром, остатки сверхновых и их потомки, будут ускорять протоны и другие ядра своим особенным образом. Эти частицы будут сталкиваться с космическими поглотителями пучка, создавая пионы, а вследствие этого и космические высокоэнергетические нейтрино, поиском которых и занимается IceCube.

Поделиться:
Популярные книги

Под крылом ворона

Шебалин Дмитрий Васильевич
3. Чужие интересы
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Под крылом ворона

Инженер Петра Великого 3

Гросов Виктор
3. Инженер Петра Великого
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Инженер Петра Великого 3

Отморозок 2

Поповский Андрей Владимирович
2. Отморозок
Фантастика:
попаданцы
5.00
рейтинг книги
Отморозок 2

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Законник Российской Империи. Том 2

Ткачев Андрей Юрьевич
2. Словом и делом
Фантастика:
городское фэнтези
альтернативная история
аниме
дорама
6.40
рейтинг книги
Законник Российской Империи. Том 2

Казачий князь

Трофимов Ерофей
5. Шатун
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Казачий князь

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

Черный Маг Императора 10

Герда Александр
10. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 10

Убивать чтобы жить 7

Бор Жорж
7. УЧЖ
Фантастика:
героическая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 7

Жандарм 5

Семин Никита
5. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 5

Настроение – Песец

Видум Инди
7. Под знаком Песца
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Настроение – Песец

Стражи душ

Кас Маркус
4. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Стражи душ

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие