Чтение онлайн

на главную - закладки

Жанры

Тени разума. В поисках науки о сознании
Шрифт:

Для любой точки на сфере Римана антиподальной является точка —1/ '. Таким образом, если отразить все майорановы точки, являющиеся корнями полинома

a( x) a 0+ a 1 x+ a 2 x 2+ a 3 x 3+ … + a n– 1 x n– 1 + a nx n,

относительно

центра сферы, то мы получим корни полинома

a*( x) a' n a' n– 1 x+ a' n– 2 x 2– … - (—1) na' 1 x n– 1+ (—1) na' 0 x n.

Пусть состояния | и | заданы, соответственно, полиномами a( x) и b( x), где

b( x) b 0+ b 1 x+ b 2 x 2+ b 3 x 3+ … + b n– 1 x n– 1 + b nx n;

тогда их скалярное произведение имеет вид

| = b' 0 a 0+ (1/ n) b' 1 a 1+ (2!/ n( n– 1)) b' 2 a 2+ (3!/ n( n– 1)( n– 2)) b' 3 a 3+ … + b' na n.

Это выражение инвариантно относительно вращений сферы, что можно непосредственно доказать, используя вышеприведенные формулы.

Применим полученное выражение для скалярного произведения к конкретному случаю b( x) = a*( x), т.е. к случаю двух состояний, майораново описание одного из которых состоит исключительно из точек, антиподальных точкам, составляющим майораново описание другого. Их скалярное произведение равно (с точностью до знака)

a 0 a n– (1/ n) a 1 a n– 1+ (2!/n(n -1)) a 2 a n– 2– … - (—1) n (1/ n)a n - 1a 1+ (—1) na na 0.

Нетрудно заметить, что при отрицательном nвсе

члены выражения взаимно уничтожаются, а значит, можно сформулировать следующую теорему (напомним, что состояние, майораново описание которого имеет вид, скажем, P, Q, …, S, обозначается через |PQ…S; точка, антиподальная X, обозначается X*):

C.1Если nнечетно, то состояние |PQR…T ортогонально состоянию |P*Q*R*…T*.

Из общего выражения для скалярного произведения можно вывести еще два свойства:

C.2Состояние |PPP…P ортогонально любому из состояний |P*AB…D).

C.3Состояние |QPP…P ортогонально состоянию |ABC…E в тех случаях, когда стереографическая проекция (из P*) точки Q* совпадает с центром тяжести множества стереографических проекций (из P*) точек A, B, C, …, E.

(Центром тяжести множества точек называют центр тяжести совокупности равных точечных масс, размещенных в этих точках. О стереографических проекциях мы говорили в §5.10 , рис. 5.19 .) Для доказательства C.3развернем сферу так, чтобы точка P* стала ее южным полюсом. Тогда состоянию |QPP…P соответствует полином x n – 1( x– ), где определяет точку Q на сфере Римана. Вычислив скалярное произведение этого состояния с состоянием, представленным полиномом ( x1)( x2)( x3)…( x n), майораново описание которого составляют корни 1, 2, 3, …, n, находим, что это произведение обращается в нуль, когда

1 + n —1 '( 1+ 2 + 3+ … + n) = 0,

т.е. когда —1/ ' равно ( 1+ 2 + 3+ … + n)/ n, иначе говоря, когда точка —1/ ' является центром тяжести (на комплексной плоскости) множества точек 1, 2, 3, …, n. Что и доказывает свойство C.3. Для того чтобы доказать C.2, поместим в южный полюс точку P. Тогда состоянию |PPP…P соответствует постоянная величина, 1. Если рассматривать ее как полином степени n, то соответствующее скалярное произведение обращается в нуль, когда

1 2 3 n= 0,

т.е. когда хотя бы одна точка из множества 1, 2, 3, …, nравна 0 или, что то же самое, совпадает с северным полюсом сферы — в данном случае, с точкой P*. Что, собственно, и требовалось доказать.

Свойство C.2позволяет интерпретировать майорановы точки в физическом смысле. Исходя из него, можно предположить, что эти точки определяют направления, измерение (типа измерения Штерна—Герлаха) спина в которых дает нулевую вероятность того, что полученное в результате измерения направление оси спина окажется диаметрально противоположным тому направлению, в котором это измерение выполнялось (см. НРК, с. 273). Кроме того, из C.2можно вывести свойство для частного случая: если спин равен 1/2 ( n= 1), то ортогональными являются исключительно те состояния, майорановы точки которых антиподальны. Свойство C.3позволяет получить общую геометрическую интерпретацию ортогональности в случае спина 1 ( n= 2). Примечателен частный случай, когда имеются два состояния, представленные в виде двух пар антиподальных точек, причем прямые, соединяющие эти точки, пересекаются в центре сферы под прямым углом. В случае спина 3/2 ( n= 3) свойства C.3(с некоторой оглядкой на C.1) вполне достаточно для подкрепления объяснений, предложенных в §5.18 . (Геометрическую интерпретацию ортогональности в общем случае я здесь давать не буду; может быть, как-нибудь в другой раз.)

Поделиться:
Популярные книги

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Имперский Курьер. Том 4

Бо Вова
4. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 4

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Венецианский купец

Распопов Дмитрий Викторович
1. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
7.31
рейтинг книги
Венецианский купец

Совершенный 2.0: Возрождение

Vector
5. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный 2.0: Возрождение

Смертельно влюблён

Громова Лиза
Любовные романы:
современные любовные романы
4.67
рейтинг книги
Смертельно влюблён

Ваше Сиятельство 5

Моури Эрли
5. Ваше Сиятельство
Фантастика:
городское фэнтези
аниме
5.00
рейтинг книги
Ваше Сиятельство 5

Цикл "Отмороженный". Компиляция. Книги 1-14

Гарцевич Евгений Александрович
Отмороженный
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Цикл Отмороженный. Компиляция. Книги 1-14

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Совершенный: охота

Vector
3. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: охота

Кодекс Крови. Книга ХI

Борзых М.
11. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХI

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14