"Теорія та методика навчання математики, фізики, інформатики. Том-1"
Шрифт:
24. КФ и кривые второго порядка.
После того как выделена структура конспекта, можно приступать к формулировке высказываний, руководствуясь приведенными выше принципами. При этом очень важно следовать грамматическому принципу.Существуют определенные закономерности построения высказываний, которые обусловлены особенностями логико-грамматического метода [10]. Этот метод основывается на том, что большинство высказываний отчетливо делится на две части. Первая часть, которая представляет собой исходный пункт высказывания, называется темой.
4.2. Порядок минора равен количеству строк или столбцов в матрице, определителем которой он является.
Здесь темой является « порядок минора», а ремой –«равен количеству строк или столбцов в матрице, определителем которой он является». Это высказывание служит для того, чтобы показать , чему равенпорядок минора матрицы. Его раскрывает рема – « количеству строк или столбцов в матрице, определителем которой он является». Это и есть главная цель и мысль высказывания.
Таким образом, порядок слов в предложении играет определенную роль и не может быть свободным. Если порядок слов изменить, то это может привести к изменению темы и ремы, они взаимно перевоплотятся друг в друга, и коммуникативная цель высказывания также изменится. Особенно важно соблюдать необходимый порядок слов в теоремах, которые задают необходимое или достаточное условие. Например, высказывание
3.29. Если все элементы какого-нибудь ряда матрицы равны нулю, то и определитель этой матрицы равен нулю
представляет собой достаточное условие равенства нулю определителя матрицы. Первая часть высказывания « все элементы какого-нибудь ряда матрицы равны нулю»здесь является темой, а вторая – « определитель этой матрицы равен нулю»– ремой. Между ними существует четкая причинно-следственная связь: из темы следует рема. Если это высказывание переформулировать следующим образом:
3.29. Если определитель этой матрицы равен нулю, то и все элементы какого-нибудь ряда матрицы равны нулю,
то в этом случае « равенство нулю определителя матрицы»превратится в тему, из которой следует новая рема « все элементы какого-нибудь ряда матрицы равны нулю». При этом не просто изменится смысл высказывания: утверждение теоремы станет неверным, так как не в каждой матрице с нулевым определителем содержится нулевой ряд. Таким образом, необходимо внимательно следить за порядком слов в высказывании, чтобы правильно передавать смысл.
Принцип недвусмысленности требует, чтобы любое высказывание имело только одну рему, одну мысль. Следующее высказывание является примером, в котором этот принцип нарушается: «Свойства
3.27. Свойства определителей одинаковы для строк и столбцов матрицы.
3.28. Свойства определителей могут быть сформулированы для общего понятия – ряда матрицы.
Как правило, сложносочиненные и сложноподчиненные предложения имеют более, чем одну тему, и использовать их нужно очень осторожно.Существует особый тип высказываний, у которых отсутствует тема. Такие высказывания содержат комплексную рему и определяются как высказывания с нулевойтемой. Высказывания с нулевой темой содержат сообщения о существовании или возникновении явлений и фактов, рассматриваемых как единое целое. Сущность таких высказываний не зависит от порядка слов в нем. Высказывания с «нулевой» темой служат для введения определений понятий или обозначений. Примером могут служить высказывания, определяющее понятие определителя:
3.1. Определителем квадратной матрицы называют число, которое ставится ей в соответствие по определённому правилу.
3.2. Определитель матрицы А обозначаютdet A, или| A| .
Конспект должен соответствовать логике изложения учебного материала, а точнее, – логике развития науки, которая составляет предмет учебной дисциплины. Отсюда следует, что все понятия должны вводиться через определения до того, как они будут использоваться в высказываниях других типов. Отмеченное положение отражается принципом первичности определений. Например, может показаться логически стройным и последовательным следующее сочетание высказываний:
3.22. Определитель квадратной матрицы равен сумме произведений элементов любой строки или столбца на их алгебраические дополнения.
3.23. Алгебраическим дополнением к элементу матрицы называют минор этого элемента, взятый со знаком плюс или минус, в зависимости от местоположения элемента в матрице. (3.22)
3.24. Минором элемента матрицы называется определитель квадратной матрицы, которая получена из исходной вычеркиванием строки и столбца на пересечении которых стоит элемент. (3.23)
Однако здесь содержание первого высказывания определяется понятием алгебраическое дополнение,которое еще не введено, это будет сделано позднее. Поэтому это высказывание не может быть понято без апелляции к материалу из будущего и, следовательно, не имеет предметного содержания. Точно так же обстоит дело и с понятием минора. Смысл высказываний должен формироваться предыдущими, а не последующими высказываниями. Верный порядок размещения высказываний должен быть следующим: