Теория физического вакуума в популярном изложении
Шрифт:
Из наших рассуждений следуют, по крайней мере, два вывода:
1. Любой физический эксперимент прямым или косвенным образом сводится к измерению относительных координат различных систем отсчета.
2 . Физика - это теория относительности, изучающая природу посредством анализа пространства событий.
Исследуя пространство событий какого-либо явления, физик, создавая теорию явления, может использовать два крайних подхода:
а) либо, на основе анализа пространства событий, попытаться угадать уравнения, которые описывают явление, так, как это сделал Ньютон при создании своей теории гравитации (индуктивный подход);
б) либо проанализировать общие геометрические свойства пространства событий и получить физические уравнения из этого анализа, так, как это сделал Эйнштейн при
Уравнения теории физического вакуума были получены дедуктивным путем. Для этого был выбран наиболее общий класс систем отсчета, который известен в настоящее время в физике, а затем исследованы геометрические свойства соответствующего пространства событий.
В настоящее время в физике известно пять классов систем отсчета:
1) инерциальные,которые движутся друг относительно друга с постоянной скоростью и без вращения;
2) ускоренные локально инерциальные первого рода,которые движутся ускоренно друг относительно друга без вращения, но локально ничем не отличаются от инерциальных систем (например, система отсчета, связанная со свободно падающим лифтом);
3) ускоренные локально инерциальные второго рода,которые движутся ускоренно относительно друг друга с вращением, но локально ничем не отличаются от инерциальных систем (например, система отсчета, связанная с центром масс однородного вращающегося диска);
4) ускоренные локально неинерциалъные(например, система отсчета, связанная с ускоряемой ракетными двигателями ракетой);
5) ускоренные конформные(такие системы связаны с физическими объектами, меняющими свои физические характеристики - массу, заряд и т. д. с течением времени).
Для каждого класса систем отсчета существует собственное, присущее только этому классу, пространство событий. Зная геометрические свойства пространства событий, можно найти, например, уравнения движения одной системы отсчета относительно другой. Поскольку система отсчета связана с каким-либо физическим телом, то мы сразу находим уравнения движения данного тела. Ясно, что ускоренное движение систем отсчета вызвано физическим взаимодействием тела отсчета с полем, в котором оно движется. Поэтому анализ пространства событий в этом случае позволяет найти не только уравнения движения тел отсчета, но и получить уравнения поля, под действием которого движется тело отсчета.
1.2. Относительность энергии равномерного движения.
Что такое абсолютная и относительная величина в физическом понимании? Мы будем говорить, что некоторая физическая величина относительна, если её можно обратить в нуль (хотя бы локально) с помощью каких-либо преобразований, имеющих физический смысл. Соответственно, если этого сделать нельзя, то физическая величина является абсолютной. Наблюдая, как Солнце восходит на Востоке и заходит на Западе, Аристотель и Птолемей пришли к выводу, что Земля находится в абсолютном покое, а Солнце и звезды вращаются вокруг неё. Однако более точные исследования астрономов показали, что Земля движется вокруг Солнца, а Солнце, в свою очередь, движется относительно звезд. Оказалось, что абсолютно покоящихся систем отсчета в природе не существует. Все находится в относительном движении.
Рис. 2.Система отсчета Sсвязана с массой m. Система отсчета S*связана с массой m*. Масса m*движется относительно массы mс постоянной скоростью v .
Выберем две системы отсчета, одна из которых Sсвязана с массой m, а другая S*с массой m*. Предположим, что физик расположен в системе отсчета Sи измеряет координаты до системы S*. Пусть система отсчета S*движется относительно системы Sс постоянной скоростью v без вращения. По определению такая
а) трехмерная геометрия этого множества евклидова;
б) траектории тел отсчета представляют собой прямые линии;
в) кинетическая энергия тел отсчета является величиной относительной. Действительно, кинетическая энергия массы m*, записанная в координатах системы Sравна половине произведения этой массы на квадрат скорости v . Перейдем теперь из системы Sв систему S*, где масса m*, покоится ( v = 0). В механике Ньютона такие переходы, совершаются с помощью координатных преобразований Галилея-Ньютона. В результате исследователь обнаружит, что кинетическая энергия тела m*в системе S*равна нулю. Этот результат как раз и доказывает, что кинетическая энергия инерциально движущихся тел относительна.
В геометрии существует понятие геодезической линии.Это линия соответствует кратчайшему расстоянию между двумя точками в данной геометрии. В геометрии Евклида геодезической (в дальнейшем слово линиямы будем опускать) является прямая. Поэтому уравнения движения тел отсчета надо записать в таком виде, чтобы их решения приводили к прямолинейным траекториям тел. Из механики Ньютона нам известно, что уравнения движения в этом случае запишутся в виде равенства нулю произведения массы тела на его ускорение. Это уравнения движения свободных тел. Но такого в природе не бывает! Все тела отсчета обладают массой и, следовательно, гравитационным взаимодействием. Конечно, это взаимодействие очень мало и в большинстве случаев им можно пренебречь (так обычно и поступают физики). Следовательно, понятие инерциальной системы отсчета является идеализированным.Исследуя пространство событий этих систем, мы получаем тривиальные уравнения движения и никаких уравнений поля. В этом смысле плоское пространство Евклида, образованное множеством относительных координат инерциальных систем отсчета, соответствует «абсолютной пустоте», так, как будто массы (и другие физические характеристики) тел отсчета устремились к нулю.
1.3. Четырехмерное пространство событий и относительность времени.
Пространство событий инерциальных систем отсчета механики Ньютона трехмерно и использует три пространственных координаты х, у и z. При движении систем отсчета эти координаты зависят от времени t, которое выступает в механике Ньютона как абсолютная величина.Представления о трехмерности пространства сохранялись в физике до тех пор, пока не начались эксперименты, связанные с распространением света. Было установлено, что свет распространяется со скоростью с = 300000 км/сек.
При таких скоростях материи (или близких к ним, но меньших чем с ) пространство событий становится четырехмерным, при этом время, умноженное на скорость света с образует четвертую координату Х 0= ct дополнительную к трем координатам х, у и z. В результате механику Ньютона заменила более совершенная релятивистская механика Эйнштейна-Лоренца. Геометрия пространства событий такой механики наделено структурой псевдоевклидовойгеометрии. Это плоская геометрия, геодезические которой представляют собой четырехмерные прямые линии. По этим линиям движутся тела отсчета четырехмерных инерциальных систем. Название псевдоевклидова геометриясвязано с тем, что четвертая координата х 0= ct выступает мнимой координатой по отношению к пространственным координатам х, у и z. Понятно, что четырехмерная инерциальная система отсчета является такой же идеализацией, как и трехмерная, поскольку, все тела отсчета хоть в какой-то степени взаимодействуют между собой.