Теория относительности — мистификация ХХ века
Шрифт:
Теперь, чтобы продолжить наблюдение свет от источника И по-прежнему, частоту вращения модулятора следует увеличить согласно условию (6), но в этом случае вновь нарушится наблюдение источника И'.
Такими должны быть экспериментальные результаты по измерению скорости света при взаимном движении источника и приемника в случае подчинения движения света классическому закону сложения скоростей.
Интересен смысл формул (4) и (8). Звено в системе наблюдателя остается таким же, как и в системе излучателя. Но при измерении его длины, так же как и длины аналогичного ему звена ' от неподвижного источника, по времени прохождения мимо наблюдателя
Прямое измерение линейных размеров проводится методом наложения эталона длины на протяженное тело. В случае измерения длины движущегося объекта (потока света, поезда) вступает в силу косвенный способ — вычисление длины по времени прохождения тела при известной скорости.
Эффект изменения длины звена как следствие изменившейся величины скорости света является кажущимся, он вызван способом нашего измерения. В дальнейшем изложении термины изменения длины звена применяются с учетом данного замечания.
Для наглядности рассмотрим пример. Два поезда на параллельных путях движутся в одном направлении. В течение одной минуты мимо наблюдателя в первом поезде прошло 20 вагонов, а во втором 15. Это может быть результатом двух причин: разными скоростями поездов или различным типом вагонов. Предположим, что тип вагонов один и тот же, тогда наше наблюдение есть результат разной скорости поездов.
Сравнивая планируемые измерения с фактически проведенными наблюдениями и опытами, находим, что скорость света действительно подчиняется классическому закону сложения скоростей.
4. Астрономические наблюдения и лабораторные эксперименты, подтверждающие классический закон сложения скоростей для света
4.1. Наблюдения Олафа Рёмера
Природа облегчила нам проведение так необходимого эксперимента, предоставила модулированный источник света и движущуюся платформу.
В 1676 г. в Парижской обсерватории датский астроном О. Рёмер, наблюдая за планетой Юпитер и его спутниками, заметил, что время полного обращения спутника Ио вокруг Юпитера, определяемое по моменту выхода (или входа) спутника из тени Юпитера, периодически изменяется. Периодичность оказалась связанной с движением Земли по орбите вокруг Солнца [5, с. 414].
В момент максимального сближения Земли с Юпитером (рис. 4), в положении I, период Ио — Т1 = 1,77 суток = 1,5·105 сек.
Рис. 4
При движении Земли к положению II период Т1 начинает увеличиваться и достигает своего максимума T2 в положении II, после чего уменьшается и становится опять равным Т1 в положении III, т. е. Т1 = Т3. Но уменьшение здесь не заканчивается, а продолжается до положения IV, где период Т4 приобретает минимальное значение. Затем происходит его увеличение до величины в первоначальном положении I. Максимальное приращение периода Ио Т2 = 15 с, примерно такое же и максимальное уменьшение — Т4 = 15с. Во всех остальных промежуточных положениях Земли на орбите изменения периода Ио пропорциональны составляющей скорости Земли относительно Юпитера по прямой Земля-Юпитер. Период увеличивается, если Земля удаляется от Юпитера, и уменьшается при приближении к Юпитеру. Так как угловая скорость обращения
Сравнивая два наблюдения периодов Ио в точках I и III, О. Рёмер увидел, что периоды их равны, но начало периода в положении III опаздывает, по его измерениям, на 22 мин по сравнению со случаем, если бы продолжительность периодов не менялась в течение времени между наблюдениями. Астроном определил, что запаздывание начала периода Ио в точке III вызвано тем, что свет от спутника должен пройти до наблюдателя дополнительное расстояние, равное диаметру земной орбиты. Делением данного расстояния на время опоздания Рёмер впервые в мире вычислил скорость света.
Рассмотрим теперь периоды в положениях II и IV. Первый из них больше первоначального на 15 с, второй — на столько же меньше. Изменение длительности периодов показывает, что свет имеет разные величины своей скорости относительно наблюдателя в зависимости от условий регистрации.
Действительно, спутник Ио отражает свет в течение времени Т и образует в пространстве поток света протяженностью = сТ, где с — скорость света в системе Юпитера, Т — время обращения спутника Ио вокруг Юпитера. — это звено, которое состоит из двух частей: а — Ио находится в освещенном месте, б — имеется разрыв в потоке света, Ио в тени Юпитера, а Земля в нашем эксперименте — платформа.
В положении I Земля неподвижна относительно Юпитера по прямой Земля-Юпитер. Звено , преодолев расстояние от Юпитера до Земли, регистрируется наблюдателем на Земле в течение периода:
т. е. в продолжение того же промежутка времени, Т1 = Т. То же самое происходит в положении III, только здесь начало времени регистрации периода, как это наблюдается, происходит с задержкой в силу того, что звену необходимо время для преодоления дополнительного расстояния по диаметру орбиты Земли: Т3 = Т.
В положении II Земля удаляется от Юпитера, звено догоняет Землю и по закону сложения скоростей скорость света относительно Земли равна с2 = с – v3, а время регистрации звена равно
где v3 = 29,8 км/с — скорость Земли по орбите.
Через полгода Земля движется навстречу потоку света, скорость которого для наблюдателя теперь равна с4 = с + v3, а время регистрации звена
Так как в (11) и (12) протяженность звена одна и та же, то, перенеся в левую часть уравнений, правые приравниваем между собой:
Преобразовав равенство (13) относительно с, находим:
Подставив в последнее выражение численные значения наблюдаемых периодов и скорость движения Земли по орбите, вновь вычисляем скорость света относительно источника: