Теория статистики
Шрифт:
Q– объем совокупного общественного продукта, национального дохода или продукции отдельных отраслей и предприятий.
54. Себестоимость продукции
Себестоимость продукции – важнейший качественный показатель, который отражает все стороны хозяйственной деятельности предприятий, их достижения и недочеты.
Под себестоимостью понимают затраты предприятия на выпуск и реализацию всей продукции или единицы продукции.
Уровень себестоимости взаимосвязан с качеством и
Себестоимость – основа определения цен на продукцию. Снижение себестоимости – это отличный показатель в деятельности предприятия, так как он приводит к возрастанию суммы прибыли и рентабельности. Для того чтобы снизить себестоимость, необходимо изучить ее состав, структуру и факторы ее динамики.
Себестоимость продукции – это стоимостная оценка используемых в процессе производства продукции природных ресурсов, сырья, материалов, топлива, энергии, основных фондов и иных затрат на производство и реализацию.
В себестоимость входят затраты прошлого труда, перенесенные на вновь созданную продукцию, расходы, связанные с использованием живого труда, и прочие затраты. С помощью этого показателя можно проанализировать, во что обходится производство продукции для предприятия.
Виды себестоимости:
Общей себестоимостью всей произведенной продукции называют общую сумму затрат, которая приходится на изготовление продукции определенного объема и состава.
Индивидуальная себестоимость – это затраты на производство единичного изделия.
Средняя себестоимость определяется делением общей суммы затрат на количество произведенной продукции.
По степени учета затрат существуют два вида себестоимости – производственная и полная.
Производственная себестоимость включает в себя затраты, связанные с процессом производства продукции – начиная с момента запуска сырья в производство и заканчивая освидетельствованием готовых изделий и сдачей их на склад.
Полная себестоимость – это сумма расходов, связанных с производством продукции, и коммерческих расходов. Коммерческие расходы – это, например, затраты на упаковку, хранение, транспортировку и рекламу.
Задачами статистики учета продукции по данным бухгалтерского учета являются определение общей суммы затрат, группировка их по видам и калькулирование себестоимости единицы продукции.
55. Понятие и виды корреляционного анализа
К. Пирсон и Дж. Юл разработали корреляционный анализ, который по их мнению должен ответить на вопрос о том, как выбрать с учетом специфики и природы анализируемых переменных подходящий измеритель статистической связи (коэффициент корреляции, корреляционное отношение, и т.д.), решить задачу, как оценить его числовые значения по уже имеющимся выборочным данным. Корреляционный анализ поможет: найти методы проверки того, что полученное числовое значение анализируемого измерителя связи действительно свидетельствует
Парный коэффициент корреляции – основной показатель взаимозависимости двух случайных величин, служит мерой линейной статистической зависимости между двумя величинами., он соответствует своему прямому назначению, когда статистическая связь между соответствующими признаками в генеральной совокупности линейна. То же самое относится к частным и множественным коэффициентам корреляции. Парный коэффициент корреляции, характеризует тесноту связи между случайными величинами х и у, определяется по формуле:
Если р = 0, то между величинами х и у линейная связь отсутствует и они называются некоррелированными.Коэффициент корреляции, определяемый по вышеуказанной формуле, относится к генеральной совокупности.
Частный коэффициент корреляции характеризует степень линейной зависимости между двумя величинами, обладает всеми свойствами парного, т.е. изменяется в пределах от -1 до +1. Если частный коэффициент корреляции равен ±1, то связь между двумя величинами функциональная, а равенство его нулю свидетельствует о линейной независимости этих величин.
Множественный коэффициент корреляции, характеризует степень линейной зависимости между величиной х1 и остальными переменными (х2, хз), входящими в модель, изменяется в пределах от 0 до 1.
Ординальная (порядковая) переменная помогает упорядочивать статистически исследованные объекты по степени проявления в них анализируемого свойства
Ранговая корреляция – статистическая связь между порядковыми переменными (измерение статистической связи между двумя или несколькими ранжировками одного и того же конечного множества объектов О1,О2,…, Оп.
Ранжировка – это расположение объектов в порядке убывания степени проявления в них k-го изучаемого свойства. В этом случае x(k) называют рангом i-го объекта по k-му признаку. Раж характеризует порядковое место, которое занимает объект Оi, в ряду п объектов.
К. Спирмен в 1904г предложил показатель, который служил для измерения степени тесноты связи между ранжировками
В последствии данный коэффициент был назван ранговым коэффициентом К. Спирмен: