Чтение онлайн

на главную - закладки

Жанры

Термодинамика реальных процессов
Шрифт:

Что касается термодинамики необратимых процессов, то Онзагер впервые в широком плане ввел в макроскопическую теорию идеи переноса, а также представление о взаимном и симметричном влиянии потоков. На фоне идей равновесия и покоя классической термодинамики это явилось достижением исключительной принципиальной важности. Оно революционизировало теорию и стимулировало появление большого множества исследований в рассматриваемой области. За свою работу Онзагер в 1968 г. был удостоен Нобелевской премии.

Однако термодинамика Онзагера опирается на классическую термодинамику с ее энтропией и на принцип микроскопической обратимости из теории детального равновесия химических реакций. Следовательно, в нее с самого начала заложены такие несовместимые понятия, как перенос (поток) и равновесие (покой), что является

миной замедленного действия, заставляющей искать новые пути и неминуемо ведущей к взрыву. Об имеющихся трудностях в теории хорошо сказал Денбиг в книге [41]: «Всякая наглядная картина по отношению к потоку энтропии становится совершенно неуместной и трудности понимания очень сильно возрастают».

Парадокс ситуации заключается в том, что энтропия оказалась привязанной к состояниям равновесия и покоя случайно, только с помощью метода ее обоснования, развитого Клаузиусом. Это побудило и позволило Онзагеру для обоснования своей теории тоже прибегнуть к соответствующим идеям равновесия (химических реакций). Если отбросить оба обоснования, тогда под энтропией вполне можно будет понимать, например, теплород (calorique) Карно либо мой термический заряд. В результате термодинамика сразу же освободится от тяжести своих главных ограничений, и это станет первым шагом в направлении общей теории. И наоборот, если прибегнуть к соответствующим ограничениям, то из ОТ в частном случае получатся теории Клаузиуса и Онзагера [13, 15, 18].

Должен также добавить, что теоретически доказать факт существования энтропии в принципе невозможно, ибо она фактически призвана выполнять роль некоего субстрата, определяющего тепловое явление и имеющего смысл вещества. Но вещество дано нам независимо от наших теорий, факт его существования можно только постулировать, а постулат с помощью основанной на нем теории не доказуем [ТРП, стр.408-409].

 6. Определение кванта вермического вещества (вермианта).

Вермическое явление имеет все те общие и специфические свойства, которые упоминаются в параграфе 15 гл. XV. Например, на уровне наномира вермическое вещество должно обладать силовыми свойствами, а на уровне микромира - дискретными, порционными, квантовыми. В пятидесятых годах я начал развивать ОТ с попытки экспериментального определения силовых характеристик вермического нанополя, но потерпел неудачу из-за помех, создаваемых конвекцией воздуха, излучаемыми фотонами и т.д. Однако дискретность и величину порции (кванта) вермического вещества на уровне микромира мне удалось установить сравнительно просто, опираясь на известные опытные законы, а также на свои экспериментальные данные.

Грубое представление о величине вермианта ? можно получить с помощью элементарной молекулярно-кинетической теории газов. Для этого кинетическая энергия хаотического движения молекулы газа отождествляется с вермической энергией, которая равна Т? . Разделив энергию моля газа на число Авогадро, будем иметь [18, с.57; 20, с.334; 21, с.243]

? = 3k = 4,14?10-23 Дж/К, (324)

где k - постоянная Больцмана.

Другое значение вермианта получается на основе отождествления энергии микровибрационного движения фотона с его вермической энергией. Для этого в первом приближении можно приравнять частоту ? в формуле Планка (253) и частоту ?max , на которую приходится максимум излучения абсолютно черного тела в законе смещения Вина. Имеем [18, с.56]

? = 3,89?10-23 Дж/К. (325)

Эту величину можно уточнить, если учесть несимметричный по отношению к частоте ?max характер планковской кривой распределения спектральной интенсивности излучения абсолютно черного тела. Для этого надо найти центр тяжести площади, заключенной под этой кривой и определяющей полную лучеиспускательную способность абсолютно черного тела при данной температуре. Этому центру отвечает некая средняя частота ?ср . Будучи умноженной на соответствующую среднюю спектральную интенсивность излучения, она дает полную лучеиспускательную способность. Отношение

?ср/Т = 7,98?1010 с-1?К-1

представляет собой закон, аналогичный закону смещения Вина. Приравняв ?ср и частоту ? в формуле Планка (253), получаем следующее уточненное значение вермианта:

? = 5,29?10-23 Дж/К. (326)

Эксперименты с потоками теплоты и электричества на основе

закона Видемана - Франца и соответствующего уравнения состояния дают значение [18, с.177; 20, с.334; 21, с.243]

? = 3,87·10-23 Дж/К. (327)

Необходимо отметить, что величины квантов различных простых веществ представляют собой фундаментальные, или мировые, константы [18, с.196; 21, с.242]. В этом свете имеющийся разброс в значениях ? весьма примечателен. Он объясняется тем, что каждый ансамбль - молекула, атом, электрон, фотон и т.д.
– обладает несколькими степенями свободы. В результате взаимодействие даже только по линии одной из них обязательно сопровождается изменением различных составляющих энергии ансамбля. Это вносит погрешность в расчеты. Кроме того, сам метод отождествления различных степеней свободы является незаконным, хотя и широко применяется на практике. Например, значение (324) найдено через газовую постоянную, которая определяется из опыта и характеризует полную энергию, подводимую к газу при его нагреве на 1°. Однако фактически в процессе нагрева газа участвует не одна, как принято в молекулярно-кинетической теории, а минимум две степени свободы - вермическая и кинетическая, которая почти на порядок меньше вермической [21, с.244]. Аналогично в фотоне надо различать вермическую и микровибрационную степени свободы. Все сказанное заставит пересмотреть некоторые законы и входящие в них коэффициенты, в том числе постоянную Планка h. Вермическое нанополе тоже заставит с собой считаться, например, при определении силового взаимодействия между телами высокой температуры, в частности между звездами, между звездами и фотонами и т.п., при этом не последнюю роль должны играть также хрональное и другие взаимодействия [ТРП, стр.409-411].

 7. Экспериментальное определение универсального взаимодействия.

Одним из важнейших понятий общей теории служит универсальное взаимодействие, отвергаемое современной наукой. Факт существования в природе этого взаимодействия подтверждается наличием бесчисленного множества эффектов взаимного влияния различных степеней свободы системы. Вместе с тем оно легко может быть обнаружено также в эксперименте на примере взаимного увлечения потоков, когда происходит силовое взаимодействие порций различных веществ, которые входят в состав носителя, распространяющегося в испытуемом проводнике.

В опыте под действием разности первого интенсиала переносятся порции первого вещества и увлекаются порции второго, а под действием разности второго интенсиала переносятся порции второго вещества и увлекаются порции первого. При этом соответствующие коэффициенты увлечения и энергии связи равны между собой (см. формулы (173) и (176)). В условиях одинакового хода времени на обоих веществах должны быть также равны пройденные пути и силы действия первой порции на вторую и второй порции на первую.

Этот опыт был осуществлен мною применительно к тепловой и электрической степеням свободы носителя - электрона, распространяющегося в железном проводнике; градиент температуры принят равным 1 К/м. Как уже отмечалось, в состав электрона входит один квант электрического вещества (электриант), а также кванты хронального, метрического, ротационного, вибрационного, вермического и т.д. веществ; они наделяют частицу временем жизни, размерами (массой), спином, колебательными, тепловыми и другими свойствами. В опытах использовались специфические вермическое и электрическое взаимодействия: под влиянием разности температур переносились вермианты электрона, а под действием разности потенциалов - электрианты. Благодаря универсальному взаимодействию в первом случае вермиантами увлекались электрианты, а во втором электриантами увлекались вермианты. Все эти потоки фиксировались. В результате при комнатной температуре сила универсального взаимодействия между электриантом и вермиантом электрона оказалась равной около 4·10-25 ? [21, с.352]. В этих же условиях сила специфического электрического взаимодействия между двумя электриантами равна около 2·10-19 ?, а сила специфического вермического взаимодействия между двумя вермиантами - около 4· 10-23 Н. Как видим, универсальное взаимодействие в 106 раз слабее известного специфического электрического, поэтому оно ранее и не было обнаружено. Специфическое вермическое тоже невелико по сравнению со специфическим электрическим [ТРП, стр.411-412].

Поделиться:
Популярные книги

Царь Федор. Трилогия

Злотников Роман Валерьевич
Царь Федор
Фантастика:
альтернативная история
8.68
рейтинг книги
Царь Федор. Трилогия

Маверик

Астахов Евгений Евгеньевич
4. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Маверик

Адвокат Империи 7

Карелин Сергей Витальевич
7. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 7

Скандальная свадьба

Данич Дина
1. Такие разные свадьбы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Скандальная свадьба

Боги, пиво и дурак. Том 6

Горина Юлия Николаевна
6. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 6

Ванька-ротный

Шумилин Александр Ильич
Фантастика:
альтернативная история
5.67
рейтинг книги
Ванька-ротный

Завод: назад в СССР

Гуров Валерий Александрович
1. Завод
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Завод: назад в СССР

Новый Рал 8

Северный Лис
8. Рал!
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Новый Рал 8

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Краш-тест для майора

Рам Янка
3. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
эро литература
6.25
рейтинг книги
Краш-тест для майора

Барон меняет правила

Ренгач Евгений
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон меняет правила

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Мастер 8

Чащин Валерий
8. Мастер
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Мастер 8

Повелитель механического легиона. Том II

Лисицин Евгений
2. Повелитель механического легиона
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том II