Чтение онлайн

на главную - закладки

Жанры

Термодинамика реальных процессов
Шрифт:

4. Термофазовые ПД.

Установленные закономерности позволяют по-новому взглянуть на уравнение Томсона-Кельвина, а также рассчитать мощность фазового вечного двигателя второго рода. Становится ясно, что в среде с давлением насыщенного пара 100% , создаваемым плоским мениском, жидкость из смачиваемого капилляра с вогнутым мениском должна испаряться, а не конденсироваться, как того требует уравнение Томсона-Кельвина. Следовательно, в закрытом сверху смачиваемом жидкостью капилляре возникает точно такая же вечная макроскопическая циркуляция жидкости и пара, как и в несмачиваемом (см. рис. 30, б).

Изображенная на рис. 30, а и б непрерывная макроскопическая круговая циркуляция

жидкости и пара - это и есть дозволяемый ОТ простейший вид искомого вечного двигателя второго рода. В работе [21, с.335] по этому поводу сказано: «Эта циркуляция представляет собой любопытный пример вечного в целом бездиссипативного макроскопического движения жидкости и пара в условиях, если система полностью изолирован от окружающей среды». К сожалению, очень трудно непосредственно наблюдать или тем более эффективно применить на практике эту циркуляцию. Поэтому нами были осуществлены более наглядные и удобные схемы фазовых устройств, действие которых в полном согласии с законами ОТ основано на реализации упомянутой выше разности давлений насыщенного пара над менисками жидкости неодинаковой кривизны.

Очень простой фазовый вечный двигатель второго рода (ПД-1) изображен на рис. 30, в; в нем зоны испарения 1 и конденсации 3 заметно удалены друг от друга по сравнению с рис. 30, а и б, что облегчает наблюдение и практическое использование устройства (см. авторское свидетельство № 822713 на «Источник электроэнергии» с приоритетом 9 июля 1979 г.). Замкнутый циркуляционный контур состоит из парового 2 и жидкостного 4 участков. Капиллярно-пористое тело (мембрана) 1 содержит множество смачиваемых жидкостью капилляров. Вогнутые мениски формируются под действием разности уровней Н. На поверхности менисков жидкость испаряется, парциальное давление пара над ними выше, чем над плоским мениском 3. Под действием возникшей разности парциальных давлений пар устремляется по контуру 2 к поверхности 3 и там конденсируется. Благодаря силам поверхностного натяжения в капиллярах жидкость по участку 4 подсасывается к мембране 1, круг замыкается и круговой процесс изменения состояния жидкости завершается. Подсасывание происходит, если высота ? не превышает капиллярного поднятия жидкости, которое может быть определено, например, по Лапласу, через коэффициент поверхностного натяжения и радиус кривизны мениска в капиллярах мембраны.

Процесс испарения сопровождается поглощением тепла Q на мембране 1, а конденсация - выделением тепла Q на мениске 3 (показано стрелками). В результате мембрана 1 охлаждается, а мениск 3 нагревается, между ними образуется разность температур, которая фиксируется дифференциальной термопарой. О наличии круговой циркуляции пара и жидкости судят по этой разности температур либо по вращению вертушки (турбинки), которую можно поместить на пути движения жидкости или пара.

Возникающая разность температур возрастает на порядок и более, если от схемы в перейти к схеме г, где с целью уменьшения теплообмена между зонами 1 и 3 жидкостный участок циркуляционного контура - мембраны 1, стеклянная трубка 4 и кольцевой стакан с плоским мениском 3 - заключен в герметичный сосуд из обычного или органического стекла и подвешен на электродах дифференциальной термопары со спаями 5.

В отличие от схемы в, где поверхность конденсации 3 одновременно определяет и напор Н, под действием которого формируются вогнутые мениски в капиллярах, в устройстве г (ПД-21) паровой участок циркуляционного контура максимально укорочен до величины h, а напорный максимально увеличен до значения Н. Это снижает гидродинамическое сопротивление парового участка и повышает кривизну менисков (растет отношение площадей В). В результате мощность ПД резко увеличивается, возрастает также разность температур, причем верхний спай термопары 5 получается холоднее нижнего. Из кольцевого стакана жидкость по сливной

трубке 6 самотеком попадает на лопасти вертушки 7 и приводит последнюю в периодическое движение. Так завершается круговой процесс изменения состояния жидкости.

Если электроэнергия, вырабатываемая дифференциальной термопарой, или работа, совершаемая вертушкой, отводится в окружающую среду, то вечный двигатель второго рода несколько охлаждается и в него из окружающей среды поступает эквивалентное количество тепла. В результате даровая теплота окружающей среды (одного источника) преобразуется в полезную электроэнергию или работу с КПД, равным 100%, - это прямо следует из уравнения первого начала (36).

Действительно, на стационарном режиме при неизменной температуре и отсутствии химических, и иных реакций внутренняя энергия ПД не изменяется, то есть dU = 0. Следовательно, если под dQ1 понимать подведенную теплоту, а под dQ2 - отведенную электроэнергию или работу, тогда dQ1 = - dQ2 . Количество подведенного тепла в точности равно отведенной электроэнергии или работе, что соответствует КПД, равному единице (100%). Такая закономерность справедлива для ПД любого типа, основанного на использовании любых термодинамических неоднородностей.

Весьма важно подчеркнуть, что в описанных вечных двигателях второго рода циркуляция жидкости и пара является реальным термодинамическим процессом, сопровождаемым трением, или диссипацией, по существующей терминологии. Теплота трения непрерывно поглощается, утилизируется на мембране, следовательно, диссипация не только не приводит к деградации энергии циркулирующего потока жидкости и пара, как того требует второй закон Клаузиуса, но, наоборот, поддерживает эту циркуляцию, является движущей причиной циркуляции. Так, диссипация из бича Вселенной, по Клаузиусу, превращается в стимул ее существования по ОТ.

Интересно отметить, что в фазовом ПД паровой и жидкостный участки циркуляционного контура представляют собой две ветви термодинамической пары, именуемой поверхностно-фильтрационной [18, с.326; 21, с.334]. Спаями этой пары служат поверхности (мениски) жидкости - искривленный в капиллярах и плоский в стакане. Как уже упоминалось, термодинамическая пара есть первая форма явления в эволюционном ряду, достигающая в своем развитии уровня самофункционирования. Это замечательное свойство встречается затем во всех последующих более сложных явлениях ряда. Как осуществляется это самофункционирование - видно на примере поверхностно-фильтрационной пары.

Для повышения эффективности фазового ПД надо увеличивать рабочее давление и снижать гидродинамическое сопротивление между искривленным и плоским менисками. Максимальное рабочее давление может быть достигнуто, если в ПД сочетаются плоский мениск с идеальным полусферическим, когда критерий конфигурации мениска (см. предыдущий параграф) В = 2. В этих идеальных условиях, например, для воды при Т = 35 К рабочее давление пара равно 5700 Па. Но достичь идеальных условий практически невозможно, поэтому реальное рабочее давление пара всегда ниже идеального.

В реальных условиях мениск жидкости формируется в ПД под действием напора ? (см. рис. 30, в и г). Согласно Лапласу, радиус кривизны мениска определяется этим напором и коэффициентом поверхностного натяжения жидкости, а от радиуса капилляра не зависит. Например, при напоре Н =10 мм радиус водяного мениска, по Лапласу, r = 0,73 мм. Если диаметр капилляра d =15 мкм и Т = 35 К, то критерий конфигурации мениска В = 1,0000264 и рабочее давление пара составляет 0,15 Па, что почти в 40000 раз ниже идеального случая. На рис. 30, г в отличие от в мениск формируется большим напором Н, в то время как гидродинамическое сопротивление пару на пути h снижено до минимума. Мощность ПД растет с увеличением числа капилляров, с этой целью используются капиллярно-пористые тела (мембраны) [ТРП, стр.459-462].

Поделиться:
Популярные книги

Господин моих ночей (Дилогия)

Ардова Алиса
Маги Лагора
Любовные романы:
любовно-фантастические романы
6.14
рейтинг книги
Господин моих ночей (Дилогия)

Его нежеланная истинная

Кушкина Милена
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Его нежеланная истинная

История "не"мощной графини

Зимина Юлия
1. Истории неунывающих попаданок
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
История немощной графини

Санек

Седой Василий
1. Санек
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Санек

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Стеллар. Трибут

Прокофьев Роман Юрьевич
2. Стеллар
Фантастика:
боевая фантастика
рпг
8.75
рейтинг книги
Стеллар. Трибут

Идеальный мир для Лекаря 26

Сапфир Олег
26. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 26

Отверженный VIII: Шапка Мономаха

Опсокополос Алексис
8. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VIII: Шапка Мономаха

Хозяйка забытой усадьбы

Воронцова Александра
5. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка забытой усадьбы

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Душелов. Том 3

Faded Emory
3. Внутренние демоны
Фантастика:
альтернативная история
аниме
фэнтези
ранобэ
хентай
5.00
рейтинг книги
Душелов. Том 3

Ползком за монстрами!

Молотов Виктор
1. Младший Приручитель
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Ползком за монстрами!

Аргумент барона Бронина

Ковальчук Олег Валентинович
1. Аргумент барона Бронина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аргумент барона Бронина

Газлайтер. Том 12

Володин Григорий Григорьевич
12. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 12