Том 1. Время Наполеона. Часть первая. 1800-1815
Шрифт:
Академия наук в 1811 году поставила на конкурс вопрос о теплоемкости газов. В 1813 году Академия присудила награду Ларошу и Берару, изобревшим метод определения коэфициента теплоемкости при постоянном давлении; впрочем, они не добились окончательных результатов; В 1815 году Академия поставила на конкурс вопрос об охлаждении. Дюлонг и Пети сообща занялись ими выполнили капитальную работу. Произведя по заранее намеченной программе ряд опытов при постоянном объеме, они установили закон равенства теплоемкости при равенстве объемов для всех простых газов.
Английские физики и химики: Дальтон и Дэви. Блестящая школа французских физиков могла найти соперников только в Англии.
Благодаря почти непрерывной войне между обоими государствами одни и те же научные вопросы, возникавшие по обе стороны Ла-Манша, разрабатывались самостоятельно с обеих сторон, и первенство в открытиях часто служило предметом
Мы уже указали, что Томас Юнг (1773–1829), врач, занимавшийся самыми разнообразными исследованиями, выставил против теории истечения серьезное возражение, доказав, что при известных обстоятельствах два световых интерферирующих луча производят темноту. Это было исходным пунктом работ Френеля, который долгое время не знал о работах Юнга. В то же время Даниэль Брьюстер (Brewster, 1781–1868), изобретатель калейдоскопа (1819), получил результаты, приблизительно совпадавшие с результатами исследований Био и Араго по поляризации.
Существование темного теплового спектра было открыто в 1801 году астрономом Вильямом Гершелем, а невидимый химический спектр (действие на хлористое серебро) был обнаружен Волластоном.
Румфорд (1753–1814) и Лесли (1766–1828) известны своими работами и открытиями в области теплоты, но все эти имена бледнеют перед именами химиков Дальтона (1766–1844) и Дэви (1778–1829). Первый известен как основатель атомной теории, заслуживающей особого изложения.
Мысль о том, что сложное тело должно характеризоваться строго определенными весовыми отношениями составляющих его элементов, кажется столь естественной, что даже непонятно, почему этот вопрос не мог возникнуть раньше. Но если при определенных отношениях в случае двух аналогичных соединений, например, в сернокислом калии и натрии, на одно и то же весовое количество серной кислоты приходятся известные количества калия и натрия, которые могут заместить друг друга, то количества эти эквивалентны, т. е. химически равнозначны. Далее, производя замещения всевозможными способами, нужно заключить, что всякое тело с химической точки зрения определяется относительным весовым количеством, обозначающим его эквивалентность по крайней мере в ряду произведенных замещений.
Однако эти заключения были выведены исключительно опытным путем немецкими химиками Венцелем (Лекции о химическом сродстве — 1777) [118] и Рихтером (Основы стехиометрии, 1792–1794) [119] , производившими опыты только с солями. Но принцип постоянных отношений не соответствовал туманным идеям о превращении элементов, господствовавшим так долго в химии: он, казалось, противоречил изменчивым результатам анализов, тогда еще не вполне ясным, а изучение соединений и разложений, видимо, указывало на возможность соединений во всяких пропорциях. Глава французской школы после смерти Лавуазье, Бертолле, долго не признавал закона постоянных отношений во всей его строгости; вместо точного количественного закона он склонен был видеть в соединениях качественные факты, определяемые равновесием между химическим сродством и разными другими естественными силами.
118
Lemons sur Vajfinite.
119
Stoechiornetriae rudimenta.
Во всяком случае, о работах Венцеля и Рихтера узнали только тогда, когда Берцелиус обратился к их исходному пункту, для того чтобы противопоставить подвергшейся некоторым сомнениям теории эквивалентности атомистическую теорию. Но главный удар, более сильный, чем все прежние, был нанесен Дальтоном в 1801 году, когда он провозгласил закон кратных отношений.
Если два тела соединяются в разных отношениях, причем вес одного из них принят за величину постоянную, то весовые количества другого тела будут находиться в весьма простом численном отношении. Для Дальтона этого было достаточно, чтобы заключить, что каждое простое тело должно состоять из атомов, имеющих одинаковый вес, характеризующий это тело; сложное же тело состоит из элементарных молекул, каждая из которых заключает небольшое, но строго определенное количество атомов составляющих его простых тел. Таким образом, явилась возможность ввести весьма простые химические обозначения, указывающие количества атомов каждого типа в элементарной молекуле.
Принцип Дальтона, конечно, получил распространение, по принимали его с осторожностью, отчасти ввиду широкой постановки его, отчасти из недоверия к атомистической гипотезе. Даже в Англии вместо термина атомный вес Дэви ограничивался термином
120
Волластон (Wollaston, 1766–1828), именем которого назван электрический элемент, открыл палладий и родий (1804) в платиновой руде.
121
Закон этот все-таки был установлен в 1811 году итальянским химиком Авогадро и вскоре подтвержден Ампером. Во Франции Пруст (Proust, 1755–1826) с самого начала защищал закон «определенных отношений».
122
Дальтон работал параллельно с Гей-Люссаком над изучением общих свойств газов и паров; он нашел для коэфициента расширения величину значительно большую, чем Гей-Люссак, но его оценка несколько превышает истинную цифру. Эти неточности были следствием несовершенного осушения сосудов, в которых производились опыты. С другой стороны, невидимому, Дэви первый до Гей-Люссака открыл, что расширение газа не зависит от его давления.
Гемфри Дэви, работая по фармации при Медицинском институте, на двадцать первом году жизни (1799) создал себе имя, испытывая на себе действие окисла азота (закиси азота), открытого Пристлеем. Румфорд пригласил его профессором химии в Королевский институт, только что учрежденный в Лондоне. Дэви имел там громадный успех и в 1803 году был принят в Королевское общество (Royal Society).
Мы уже указали на главное открытие Дэви — разложение щелочей при помощи электричества и подтверждение того, что они представляют собой соединение металла с кислородом. Спустя долгое время после открытия калия и натрия ему удалось получить кальций, барий, стронций и магний.
Зная, что калий чрезвычайно энергично соединяется с кислородом, он хотел воспользоваться последним для решения задачи, смущавшей всех химиков. Согласно учению Лавуазье каждая кислота содержит кислород; это должно было оказаться справедливым и для кислоты, которую добывали из морской соли, так называемой соляной (хлористо-водородной).
Вместо того чтобы удалить кислород из соляной кислоты, Шееле обработал ее кислородом и получил окрашенный газ. Этот газ, по учению Лавуазье, содержал кислород, и оставалось еще найти простое основание (радикал) кислоты.
Дэви пытался выделить радикал, действуя калием на соляную кислоту. Но в результате опытов (1808) оказалось, что кислота эта вовсе не заключает кислорода, что она представляет собой соединение водорода с газом Шееле.
Следовательно, этот последний нужно было признать простым телом, и Дэви назвал его хлорином, а французские химики — просто хлором.
Когда во Франции стало известно об этих исследованиях, Гей-Люссак вместе со своим товарищем по Политехнической школе Тенаром (1777–1857) занялись такими же изысканиями. Результатом сотрудничества было пятнадцать работ, собранных в 1811 году в один том. Обоим ученым с самого начала удалось добыть калий и натрий чисто химическим путем, разлагая щелочи раскаленным докрасна железом. Они получили эти металлы в достаточном количестве и могли воспользоваться ими для других реакций, а именно, разлагая борную кислоту калием, они открыли и выделили бор. Они выработали метод элементарного анализа органических веществ и (вопреки Бертолле и своему первоначальному убеждению) высказались за то, что хлор — простое тело, т. е. подтвердили мнение Дэви.
В 1813 году Дэви получил специальное поручение посетить Францию по дороге в Италию. Получив приглашение исследовать вещество, недавно добытое из морских водорослей парижским селитроваром Куртуа и изучавшееся химиком Клеман-Дезормом, он заявил, что вещество это — простое тело, химически сходное с хлором, и предложил назвать его иодином. Вскоре Гей-Люссак представил Академии свое заключение в таком же смысле, но употребил название иод. Во всяком случае, это открытие вполне подтвердило теорию английского ученого и оправдало существенное изменение, которое он внес в идеи Лавуазье.