Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая
Шрифт:
Коши, поступив в 1807 году из Политехнической школы в Корпус путей сообщения, с 1813 года посвятил себя исключительно науке; в 1816 году он вступил в Академию, присудившую ему высшую награду (grand prix), в то же время он преподает механику в Политехнической школе, высшую алгебру — в Сорбонне, математическую физику — в College de France. Горячий легитимист, он отказывается присягнуть Июльскому правительству, покидает Францию в 1831 году, профессорствует два года в Турине, затем отдается научному воспитанию герцога Бордосского. В 1838 году он возвратился в Академию, но кафедру получил снова только в 1848 году.
Коши, кроме своих дидактических сочинений, представляющих образец в смысле точности изложения, оставил свыше 800 мемуаров по всем отделам математики.
Прежде всего вопрос о том, может ли функция допускать интегрирование; точное установление понятия определенного интеграла; обоснование теории несобственных интегралов, создание счисления индексов, понятие об определенном интеграле между мнимыми пределами — этим исчерпывается поле исследований Коши.
Относительно диференциальных уравнений, обыкновенных и с частными производными, Коши доказал существование решений и выработал для них общие методы; кроме того, точно определил условия разложения функций в бесконечные ряды.
В чистой алгебре Коши ввел понятие о детерминантах; по теории чисел он доказал одно из труднейших предложений Фермата; в области математической физики он заложил основы упругости и первый объяснил явление светорассеяния.
Теория функций: Абель, Якоби. Теоретическое значение работ Коши о функциях не могло быть, однако, оценено надлежащим образом до фактического появления новых функций. В течение 40 почти лет Лежандр (1752–1833), занявшись этим вопросом в том пункте, на котором его оставил Эйлер, один разрабатывал эту отрасль анализа. В его Интегральном исчислении (1811–1816—1817) излагаются наряду с частью исследований об эллиптических функциях также изыскания, произведенные им относительно двух классов определенных интегралов, которые он назвал эйлеровыми. В 1825–1826 годах он собрал воедино все данные об эллиптических функциях, к открытию которых привело исследование интеграла квадратного корня из многочлена четвертой степени [64] .
64
В 1830 году Лежандр собрал воедино свои труды по Теории чисел.
В том же 1826 году в Париж приехал на 10 месяцев молодой норвежец Нильс-Генрих Абель (1802–1829), только что перед тем напечатавший в первом томе Журнала Крелле доказательство невозможности разрешить в радикалах общее уравнение пятой степени. Ему пришла в голову гениальная мысль об обращении эллиптических функций, а также и об использовании здесь мнимых величин. Открытия, к которым он таким образом пришел, почти тотчас побудили его заняться рассмотрением гораздо более обширного класса трансцендентальных функций (ныне называемых абелевскими), и он представил в Академию наук Записку об одном общем свойстве этих функций. Эта капитальная работа была послана на рассмотрение Коши; целиком поглощенный своими трудами, последний держал ее у себя, не читая [65] .
65
Записка была напечатана Академией только в 1841 году; во время печатания Либри, которому был поручен надзор за печатанием, повидимому, утаил рукопись, так как она пропала. Абелевские функции суть интегралы иррациональной функции, связанной с независимой переменной посредством алгебраического уравнения.
Будучи слишком скромен в самооценке и не найдя достаточной поддержки в старике Лежандре, несмотря на всю его благосклонность, Абель, обескураженный, оставил Париж;
Почти одновременно с Абелем и независимо от него Карл-Густав-Яков Якоби (1804–1851), уроженец Потсдама, кенигсбергский профессор с 1827 года, пришел путем изучения трудов Лежандра к тем же идеям об эллиптических функциях. Напечатав в соревновании с Абелем различные записки в Журнале Крелле, он опубликовал в 1829 году свои Funda-menta Nova, в течение долгого времени считавшиеся капитальнейшим трудом по этому вопросу. В 1832 году он напечатал весьма ценное исследование о гиперэллиптических функциях, которое также должно быть поставлено рядом с работами Абеля в этой области.
Теория чисел: Лежён-Дирикле. В то время как аналитикам открывались все эти новые пути, путь, указанный Ферма за }гва столетия перед тем, вечно ставил им досадные-задачи, особенно же те, которые касаются невозможности разрешения некоторых неопределенных уравнений. Эйлер и Лагранж только доказали для случая п = 3 или п = 4, что уравнение х11 — f уп = зп не может быть решено в целых числах, если п больше 2, подобно тому как это разъяснил Ферма.
В 1825 году двадцатилетний студент Лежён-Дирикле, родившийся в Дюрене, при содействии Лежандра представил в Академию доказательство невозможности случая, когда п — 5. Это был первый дебют математика, который в 1827 году стал профессором в Бреславле, в 1833 в Берлине, а в 1855 сменил Гаусса в Гёттингене. Его Лекции по теории чисел вполне оправдали надежды, вызванные его блестящим bbi-ступлением на научном поприще, той ясностью и простотой, которую он умел придать изложению прежних исследований, а также и своих открытий.
Механика: Пуансо, Пуассон, Ламе. В области прикладной математики первенство французских ученых в этот период проявляется еще заметнее, чем в сфере чистого знания. Пуансо (1779–1859), вступив в Академию в 1813 году, напечатал в 1825 году исследование о Геометрии положения, а в 1834 году обнародовал свою Новую теорию вращения тел; оперируя понятием эллипсоида инерции, совокупно с понятием о парах, он сумел получить геометрическое решение капитальной проблемы динамики. Пренебрегая анализом, питая любовь только к геометрической простоте, этот гениальный ученый, к сожалению, был слишком беспечен и не старался умножить число доказательств мощи своего духа. Зато Пуассон (1781–1840), профессор анализа в Политехнической школе, с 1816 года профессор механики в Сорбонне, был плодовитым автором по вопросам анализа; он написал СЕыше 300 работ; он продолжал развивать лапласов метод приложения анализа к явлениям природы. В известном отношении некоторые его труды по математической физике, правда, уже устарели, но другие сохраняют свою ценность и оправдывают репутацию ученого, которого современники ставили на одну доску с Коши.
Ламе (1795–1850), вышедший в 1817 году из Политехнической школы в Инженерный корпус, десять лет профессорствовал в России вместе с Клапейроном. Возвратясь в 1831 году во Францию, он занимал кафедру физики в Политехнической школе до 1844 года и в 1836 году напечатал свой курс, произведший настоящую революцию в науке. Его первая записка об изотермических поверхностях, применяя криволинейные координаты, открыла совершенно новые пути. Но главные его труды относятся к последующему периоду.
Дюгамель (1797–1872), с 1830 года профессор Политехнической школы, которую окончил в 1816 году, получил известность своими ценными исследованиями по теплоте и акустике. Он первый догадался изучать колебания по следам, оставляемым острием на движущейся закопченной поверхности. Но со времени вступления своего в Академию наук (1840) он занимался большей частью лишь изучением методов преподавания. Не следует забывать также роль Дюгамеля в установлении точных основ исчисления бесконечно малых.