Чтение онлайн

на главную - закладки

Жанры

Том 9. Загадка Ферма. Трехвековой вызов математике
Шрифт:

Ведический алтарь в форме сокола. Буквы обозначают разные типы кирпичей, используемых при постройке

(источник: Джордж Гевергезе Джозеф «Павлиний хохолок»)

Одной из важнейших характеристик алтаря была его площадь. Чтобы рассчитать ее, требовались формулы, с помощью которых можно было бы преобразовать одну геометрическую фигуру в другую той же площади. Подобные формулы содержатся в шульба-сутрах. В шульба-сутре Бодхайяны, датированной 800–600 годами до н. э., содержится

формулировка теоремы Пифагора, методы вычисления квадратного корня из 2 (с точностью до пятого знака после запятой), а также описан ряд геометрических построений. Среди них — различные решения задачи о квадратуре круга (приближенные) и о построении многоугольников, чья площадь равна сумме или разности площадей двух других многоугольников. Для верного выполнения ритуалов тщательное соблюдение форм и размеров алтарей было столь же важно, как и безошибочное произношение мантр. Позднее Апастамба написал шульба-сутры на те же темы, что и Бодхайяна, но более подробные. Катьяяна создал шульба-сутры, немного дополнявшие предыдущие. Оба эти автора писали в более древнем стиле по сравнению с тем, что описал грамматик Панини в IV веке до н. э.

Бодхайяна точно изложил теорему Пифагора: «Веревка (шульба), натянутая по диагонали квадрата, образует фигуру вдвое большей площади, чем исходный квадрат». Катьяяна приводит более общий случай: «Веревка [натянутая вдоль диагонали и по длине равная] диагонали прямоугольника образует фигуру той же площади, что и образованная горизонтальной и вертикальной сторонами».

Теорема Пифагора в изложении Водхайяны. Площадь квадрата, построенного на диагонали, вдвое больше площади исходного квадрата.

Теорема Пифагора в изложении Катьяяны.

Эти знания позволяли строить ведические алтари с исключительной точностью. В качестве примера можно привести так называемый алтарь смасана, на котором богам подносился одурманивающий напиток сома. Чтобы жертвоприношения возымели нужный эффект, размеры основания алтаря должны были точно соблюдаться.

В шульба-сутре Апастамбы приводились точные указания по постройке этого алтаря. Джордж Гевергезе Джозеф изложил эти указания в современной нотации так:

Используя веревку, отметьте ХY длиной ровно 36 пад.

Отметьте на этой линии точки Р, Q и R такие, что ХР, XR и XQ равны 5, 28 и 35 пад соответственно.

Проведите перпендикуляры в точках X и Y.

Зная, что треугольники АРХ, DPX, BRY и CRY прямоугольные, а их стороны выражены целыми числами, определите положение точек А, В, С и D. Иными словами, длина AXD должна составлять 24 пады, длина ВYС — 30 пад. Если построение верно, отрезки АС и BD должны пересекать ХY в одной точке О.

АХ XD = 12 пад

BY = YC = 15 пад

ХР = 5 пад

PR = 23 пады

RQ = 7 пад

QY = 1 пада

ХY = 36 пад

Размеры

алтаря смасана

(источник: Джордж Гевергезе Джозеф «Павлиний хохолок»)

Получим следующие пифагоровы тройки:

АРХ и DPX имеют стороны 5, 12, 13.

АОХ и DOX имеют стороны 12, 16, 20.

AQX и DQX имеют стороны 12, 35, 37.

BRY и CRY имеют стороны 8, 15, 17.

BOY и COY имеют стороны 15, 20, 25.

ВХУ и СХУ имеют стороны 15, 36, 39.

Так как стороны этих треугольников выражены целыми числами, их можно было отмерить с удивительной точностью. Если этого было недостаточно, сама конструкция содержала множество дополнительных пифагоровых троек, которые помогали еще больше повысить точность. Так пифагоровы тройки оказались на службе технологий. Это удивительно и красиво. Конечно, было известно множество других троек, которые также использовались при сооружении разных алтарей.

Поэтому очевидно, что ведической цивилизации была прекрасно известна теорема Пифагора. Она обычно использовалась в задачах вида «объединить два равных или неравных квадрата и получить третий квадрат». С ее помощью можно было построить алтарь, по площади равный двум другим. Решение задачи такого типа приведено в шульба-сутрах. В современной нотации оно выглядит так:

Пусть нужно объединить два квадрата — ABCD и PQRS.

Пусть DX = SR.

Следовательно, площадь квадрата со стороной АХ будет равна сумме площадей квадратов ABCD и PQRS.

На рисунке ясно видно построение, описанное в тексте. В нем явно используется теорема Пифагора: AD2 + SR2 = АХ2

(источник: Джордж Гевергезе Джозеф «Павлиний хохолок»)

Вне всяких сомнений, еще в незапамятные времена люди чувствовали красоту арифметики и геометрии. С самого начала им стало понятно, что все фигуры делятся на криволинейные и прямолинейные. Прямоугольные треугольники быстро заняли привилегированное место среди прочих фигур. Два прямоугольных треугольника можно получить, если разделить прямоугольник пополам его диагональю. Привилегированное место в арифметике заняли натуральные числа, которые использовались при счете. В какой-то момент стало понятно, что можно строить прямоугольные треугольники, длины всех сторон которых выражены целыми числами. Открытие равенства суммы квадратов катетов и квадрата гипотенузы было особенным.

Было найдено удивительное и замечательное свойство удивительной и замечательной фигуры, красота, свойственная прямоугольным треугольникам, о которой стоило рассказать потомкам. Пифагор во время одного из своих путешествий в Египет или Месопотамию узнал об этом свойстве и восхитился им, как восхищаемся этим свойством и мы. Он также привел доказательство этого свойства. Быть может, его доказательство было первым, а может быть, и нет. В любом случае Пифагор прочувствовал красоту чисел и фигур и подтвердил, что мир строится по математическим законам. До сих пор неизвестно, кто именно открыл эту теорему и когда.

Поделиться:
Популярные книги

Шесть принцев для мисс Недотроги

Суббота Светлана
3. Мисс Недотрога
Фантастика:
фэнтези
7.92
рейтинг книги
Шесть принцев для мисс Недотроги

Брачный сезон. Сирота

Свободина Виктория
Любовные романы:
любовно-фантастические романы
7.89
рейтинг книги
Брачный сезон. Сирота

Выстрел на Большой Морской

Свечин Николай
4. Сыщик Его Величества
Детективы:
исторические детективы
полицейские детективы
8.64
рейтинг книги
Выстрел на Большой Морской

Адаптация

Уленгов Юрий
2. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Адаптация

Новый Рал 4

Северный Лис
4. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 4

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Имперский Курьер. Том 3

Бо Вова
3. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 3

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Ротмистр Гордеев 3

Дашко Дмитрий
3. Ротмистр Гордеев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев 3

Единственная для невольника

Новикова Татьяна О.
Любовные романы:
любовно-фантастические романы
5.67
рейтинг книги
Единственная для невольника

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Кодекс Крови. Книга ХII

Борзых М.
12. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Крови. Книга ХII