Учитель

на главную - закладки

Жанры

Поделиться:

Учитель

Шрифт:

Но в памяти такая скрыта мощь,

Что возвращает образы и множит…

Шумит, не умолкая, память-дождь,

И память-снег летит и пасть не может.

Д. Самойлов

Разумеется, единицы измерения времени условны. Столь же условны и круглые даты. Но ведь вся наша жизнь, в конечном счёте, определяется соглашениями, иногда явными, высказанными, иногда подразумеваемыми. Из-за этих молчаливых соглашений, усваиваемых постепенно, начиная с колыбели, так трудно взрослому человеку «вжиться» в другую культуру, цивилизацию. Он не понимает подчас самых простых ситуаций, а другая сторона не понимает, что он не понимает вещей, столь очевидных, что о них никто и не задумывается.

И всё-таки при всей условности дат, делящихся на пять, десять, на сто и т. д [1] ., они играют существенную роль в нашей жизни, обозначая вехи и границы. Помню, с каким трепетом ждал я появления двойки с тремя нулями 31 декабря 1999 г. И это несмотря на то, что новый век, новое тысячелетие по всем историческим канонам начиналось лишь в ночь на 2001 г. В результате многие вещи стали звучать для меня футуристично, многие печально. Всю жизнь я привык говорить и писать «прошлый век», «в прошлом веке» и т. д., имея ввиду 19-й век, время Бетховена, Гаусса, Пушкина, Шумана, Брамса, Листа… А теперь мой собственный век (и не со мною ли вместе?) оказался «прошлым» [2] .

Да что век, само тысячелетие ушло, странно чувствовать себя человеком «прошлого тысячелетия». Уже почти палеонтология получается.

1

Ведь и сама десятичная система счисления условна. Видимо, дело в том, что Б-г наградил нас десятью пальцами (интересный вопрос, — почему именно десятью). Будь мы роботами, видимо, считали бы на один-два, а родись осьминогами, наверное, считали бы в восьмеричной системе.

2

Как я сам и писал недавно «А век, в котором жизнь прожил / Теперь зовётся прошлым» (Вестник, № 16(300), 24 июня 2002 г., стр. 52).

И вот незаметно подходит ещё одно круглое, трехзначное число. Столетие моего Учителя, одного из самых выдающихся математиков 20-го века Андрея Андреевича Маркова, Младшего. Вечная река Лета течёт незаметно, но уносит нас она неотвратимо, безостановочно… Оторвёшься на мгновение от суеты, и холод по спине, как изменился пейзаж, как далеко остались фиалковые луга детства, да что же там детство… Кажется, вчера встретил я на Ленинских Горах (теперь снова Воробьёвых, если не ошибаюсь) будущего своего Учителя. Стремительная походка, прямая осанка, ослепительный контраст голубых глаз и седых волос. Всё необычно, всё из ряда вон. Я уже знал, что это Андрей Андреевич Марков и что только что отмечалось его шестидесятилетие. И была осень, и шёл 1963-й год… Сорок лет назад. И уже собственное моё шестидесятилетие незаметно пришло и минуло…

Мы, ученики Андрея Андреевича, просто обязаны написать о нём, о нашем времени. Пока помним, сколько помним. Пока живём.

В меру своих сил я пробую сделать это. Эти строки посвящаются памяти моего Учителя и памяти трёх его учеников и последователей, дорогих друзей и коллег, безвременно ушедших из жизни. Вот их имена: Сергей Юрьевич Маслов (10 июня 1939 г. — 29 июля 1982 г.), Освальд Демут (Oswald Demuth) (9 декабря 1936 г. — 15 сентября 1988 г.), Альберт Григорьевич Драгалин (10 апреля 1941 г. — 18 декабря 1998 г.) О каждом из них я коротко расскажу ниже, каждый из них — отдельный особенный мир [3] .

3

Воспоминания о Драгалине выдающегося голландского математика A.Troelstra можно найти нанекролог S.Artemov, B.Kushner, G.Mints, E.Nogina and A.Troelstra, In Memoriam: Albert G. Dragalin, The Bulletin of Symbolic Logic, vol 5, No.3, 389–391,1999. Воспоминания ленинградских коллег Маслова можно найти на сайтеТам же есть координаты опубликованных некрологов. Мне не удалось локализовать некролог Демута. Его памяти я посвятил большую статью и доклад конференции в Брно: B.A.Kushner, Kurt Gödel and the constructive Mathematics of A.A.Markov, Gödel ‘96, Logical Foundations of Mathematics, Computer Science and Physics — Kurt Gödel‘s Legacy, Brno, Czech Republic, August 1996, Proceedings, Lecture Notes in Logic, 6, Petr Hajek, Ed., 51–63,1996, Springer, Germany.

Математика вспоминается многим бесконечными списками формул (одна тригонометрия чего стоит), в лучшем (или в худшем, как для кого) случае рядами теорем, вместе с которыми надо, вдобавок, ещё и доказательства запоминать. И экзамены! Кошмар экзаменов — школьных, вступительных, институтских… Сами математики представляются людьми не от мира сего, часто их «подозревают» в эмоциональной ущербности и, вместе с тем, наделяют необычайными общими умственными способностями. Вот эпизод из моего прошлого. Однажды я должен был встретиться с коллегой на станции метро «Фрунзенская». Станция эта тихая, уютная… Приехав туда заранее, я устроился на удобной деревянной скамье, и стал рассматривать клавир до-минорного фортепианного Концерта Моцарта. В самом рисунке нотных линий всегда было что-то меня завораживающее. Уходя из дому, я забыл сменить пальто, в котором гулял с моим сеттером Крассом. «Собачье» пальто было заслуженное — в следах глины и многочисленных когтей и зубов окрестных недругов моего пса. Вероятно, эта странная комбинация клавира и рваного пальто насторожила милиционера. Некоторое время он нервно прохаживался поблизости и, наконец, тихо попросил показать документы. Я протянул ему удостоверение члена Московского Математического Общества. Заглянув в него, страж порядка понимающе протянул «а…», с сочувствием козырнул и отошёл.

Конечно, все эти представления о математике и математиках от реальности далеки… Математика — безудержно драматическое занятие, как и всякая наука, в которой человек соревнуется, почти как Иаков, с Б-гом, открывая Вечные Истины, божественность которых неоспорима, а также соревнуется с себе подобными в этой борьбе за права Первопроходца. Достаточно вообразить строителя, озарённо возводящего великолепное здание, которое вдруг рушится, как карточный домик, поскольку самый первый камень оказался дефектным. Такие трагедии не единожды случались с математиками: бессонные ночи, дни, занятые упорными размышлениями, так что всё остальное вокруг воспринимается как бы через пелену. Наконец, вот она — Теорема. И… горькое прозрение, руины… В отличие от обыкновенного строителя здесь есть ещё одна эмоционально убийственная возможность: всё в порядке с самим Зданием, да оказывается, что кто-то его уже построил… Открытие кем-то уже открыто, Теорема кем-то уже доказана… Какие горькие, порой безобразные приоритетные споры возникают подчас [4] … Да, живая, очень живая наука — Математика. И очень живые и очень разные люди, математики. Не думаю, кстати, что они в целом «умнее» представителей иных профессий. Математические способности далеко не всегда даруются в качестве специального проявления общего интеллекта. Встречаются талантливые, более чем талантливые математики, которые вполне посредственны за пределами своей науки. С другой стороны, какие гармоничные Личности, какие целостные проявления Интеллекта можно встретить на дорогах этой Царицы Наук…

4

Достаточно напомнить ожесточённую дискуссию конца 17-го века по поводу «изобретения» дифференциального и интегрального исчислений. Я имею ввиду приоритетный спор между двумя великими учёными — Ньютоном и Лейбницем. (См., например, David M. Burton, The History of Mathematics, An Introduction, Second Edition, Wm.C.Brown Publ., 1991, стр. 366 и далее).

Поскольку мне предстоит рассказывать о Математике, невозможно совсем не касаться его науки. Я постараюсь удержаться от технических подробностей, формул и т. д., оставаясь скорее в рамках общефилософского контекста математических открытий и концепций. Читатель, которому эти части очерка покажутся трудными или скучными, может просто просматривать или даже опускать их.

Математику часто называют Царицей Наук. Действительно, именно она лежит в основании всего свода точных знаний,

без которых немыслима наша цивилизация. К этому можно добавить невероятную красоту некоторых математических открытий, настоящих жемчужин нашего Духа. Вот, например, теорема Пифагора (приблизительно 580 г. — 500 г. до новой эры), пожалуй, самый известный математический факт, если оставить в стороне, что дважды два равно четырём. Недаром в многочисленных проектах посланий иным цивилизациям Пространства почти всегда фигурирует чертёж доказательства этой теоремы, поскольку представляется очевидной универсальность геометрической истины, общей любым проявлениям Интеллекта. Чертёж этот вошел даже и в грубоватую пословицу («пифагоровы штаны на все стороны равны»). В той же Пифагоровской школе были открыты иррациональные числа [5] . Значение этого события трудно переоценить, несомненно, речь идёт об одном из величайших достижений человеческого Духа. В геометрических терминах суть дела состоит в том, что сторона и диагональ квадрата не имеют общей меры. Невозможно найти такой эталон длины, который уложится целое число раз в обеих измеряемых длинах. Отсюда следует, что если установить стандарт длины, скажем, один см, и пытаться измерять в получившейся системе диагональ квадрата со стороной 1 см, то процесс измерения будет необходимо бесконечным. Греческие учёные шестого века до нашей эры оказались, таким образом, перед нелёгким выбором: либо признать существование новых иррациональных (сам термин говорит о некотором замирании сердца) чисел, либо допустить, что некоторые интервалы не имеют длины вообще (какой удар по геометрической интуиции!). Таким образом, в поле деятельности человека появились новые, идеальные объекты, соприкасающиеся с бесконечностью, и далеко выходящие за рамки непосредственного чувственного опыта [6] . С этим же открытием связана и знакомая почти по начальной школе процедура деления целых чисел с остатком, которую можно обобщить до процедуры нахождения наибольшего общего делителя двух положительных целых чисел. Эти древнейшие алгорифмы носят имя Евклида, греческого учёного, жившего в третьем веке до нашей эры. Его же традиция считает автором так называемых «Элементов» («Начала», 15 книг), свода греческой математики. Особенное значение имеет выполненное в «Элементах» аксиоматическое построение геометрии [7] . По своему месту в нашей цивилизации этот труд можно сопоставить, пожалуй, только с Библией.

5

Действительное число называется иррациональным, если оно не представимо, как отношение двух целых чисел. В нашем примере речь идёт об иррациональности квадратного корня из двух, первом и самом знаменитом примере этого рода. Иррациональное число записывается бесконечной (непременно бесконечной!) и не периодической десятичной дробью.

6

Впрочем, сама наша способность оперировать с абстрактными понятиями, в частности, с теми же положительными целыми числами, удивительна. Можно говорить о шести яблоках, шести стульях, шести улыбках. Можно заметить что-то общее во всех этих группах объектов, возможность расположить объекты из разных групп парами. Следующий шаг, формирование идеи числа «шесть», сущности освобождённой от любой конкретной ситуации, представляет собою подвиг абстракции, к сожалению, мало кем замечаемый.

7

Учебники геометрии Киселёва, памятные нескольким поколениям читателей, в сущности, представляют собою переработки Евклида.

А загадка числа π? Почему отношение длины окружности, этого воплощения симметрии и красоты, к её диаметру выражается иррациональным числом, несколько большим трёх? Почему, например, не просто три? Какие Тайны мира кроются в бесконечной последовательности знаков этой уникальной вселенской постоянной [8] ?

Тайны безмерной глубины встречаются уже в самых начальных, школьных разделах математики. Некоторые из них волнуют человеческое воображение тысячелетиями. Такова загадка совершенных чисел. Положительное целое число называют совершенным, если оно равно сумме своих положительных делителей, меньших, чем оно само. Например, 6 = 1+2+3. Следующее совершенное число 28, за ним следует 496. Рост этих чисел поразителен, скажем, шестое по счёту совершенное число мерится уже миллиардами (8 589 869 056). Понятие совершенного числа восходит к пифагорейцам, т. е. к шестому веку до н. э. Последователи этой философской и математической школы развивали мистические учения о числах, наделяя некоторые из них особенными социальными и этическими свойствами. Такого рода свойства совершенных чисел волновали мыслителей на протяжение многих веков. Например, Бл. Августин (354 г. — 430 г.) считал, что Б-г, который мог бы создать мир за один миг, посвятил этой задаче шесть дней именно потому, что шесть — совершенное число, и это символизирует совершенство Творения. Интересно, однако, что мистическое число сатаны 666 записывается тремя шестёрками [9] .

8

Разряды привлекали и привлекают внимание, как профессиональных математиков, так и любителей. Мы отсылаем читателей к настоящей поэме о «пи» и рыцарях этого числа, изящно изданной книге David Blatner, The Joy of, Walker Publishing Co., New York, 1977, paperback 1999. Вдоль всей книги, по нижнему полю страниц проходит вереница едва различимых цифр: миллион (!) знаков загадочной константы.

9

«Здесь мудрость. Кто имеет ум, тот сочти число зверя, ибо это число человеческое: число его шестьсот шестьдесят шесть» (Откровение Святого Иоанна Богослова (Апокалипсис), 13:18).

Многие поколения математиков сражались и сражаются с загадками совершенных чисел. Например, все обнаруженные до сих пор совершенные числа — чётны, но неизвестно, бесконечна ли последовательность таких чисел. И уж совсем неприступной оказалась проблема совершенных нечетных чисел. Никто не знает, существует ли хоть одно нечётное совершенное число [10]

Но вернёмся к одному из Творцов математической науки, которому посвящён настоящий очерк.

10

Ср. Burton, цит. соч. стр. 454 и далее.

Хочу сразу же сказать, что я не пишу работу по истории математики, скорее пытаюсь рассказать об А.А. Маркове, Мл., полагаясь в основном на свою память. Последняя же возвращает Прошлое картинами, вырванными из потока времени, фокусируется по прихоти неведомого Режиссёра на некоторых, не всегда самых значительных из них. Картины эти воспроизводятся на внутреннем языке Памяти в невероятно живой достоверности, во всём богатстве красок, звуков, эмоций… К сожалению, временные вехи в этом супероскаровском фильме не всегда расставлены, а те временные отметки которые всё же появляются, иногда обманчивы. Фотографическая формальная память, которой я был одарён в молодости, вместе с молодостью же и ушла, сменившись сокровищами ассоциаций, в которых, однако, меркнут точные числа и имена и которые иногда далеко уводят в сторону от выбранной дороги… Приношу заранее извинения за возможные невольные неточности…

Комментарии:
Популярные книги

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

На границе империй. Том 7

INDIGO
7. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
6.75
рейтинг книги
На границе империй. Том 7

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4

Магия чистых душ 3

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Магия чистых душ 3

Возвращение Безумного Бога 2

Тесленок Кирилл Геннадьевич
2. Возвращение Безумного Бога
Фантастика:
попаданцы
рпг
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 2

Морозная гряда. Первый пояс

Игнатов Михаил Павлович
3. Путь
Фантастика:
фэнтези
7.91
рейтинг книги
Морозная гряда. Первый пояс

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Внебрачный сын Миллиардера

Громова Арина
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Внебрачный сын Миллиардера

Лейтенант космического флота

Борчанинов Геннадий
1. Звезды на погонах
Фантастика:
боевая фантастика
космическая фантастика
космоопера
рпг
фэнтези
фантастика: прочее
5.00
рейтинг книги
Лейтенант космического флота

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам

Бастард

Майерс Александр
1. Династия
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2