Удивительная Солнечная система
Шрифт:
Солнце не исключение. Его можно условно разделить на три вложенные друг в друга части, примерно равные по радиусу (рис. 20 на цветной вклейке). Во внутренней трети идут ядерные реакции на водороде, это зона энерговыделения. Промежуточная зона – область лучистого переноса энергии. Вещество Солнца здесь уже нагрето недостаточно для ядерных реакций, но еще имеет довольно высокую температуру, обеспечивающую газу прозрачность. Это не значит, что тут вообще не происходит перемешивания вещества, однако за транспортировку энергии отвечает главным образом лучистый перенос.
И наконец, третья, внешняя зона – это зона конвекции. Вещество в ней
Какие же ядерные реакции идут в центральных областях Солнца?
Естественно, это термоядерные реакции превращения водорода в гелий. Их известно две: прямая протон-протонная реакция и углеродно-азотный цикл Бете – Вайцзеккера. Каждая из них идет в несколько этапов. Рассмотрим обе.
Протон-протонная реакция начинается с того, что ядро атома водорода (протон) соединяется с другим таким же протоном, образуя ядро дейтерия. Это самый вялотекущий этап протон-протонной реакции. Почему? Чтобы понять это, рассмотрим состояние вещества в центре Солнца.
Естественно, мы не можем заглянуть туда. Лишь солнечные нейтрино, беспрепятственно пронзающие толщу солнечного вещества, доносят до нас кое-какую информацию. Но в целом о том, что делается в недрах Солнца, ученым известно лишь из численных моделей. При этом некоторые параметры остаются неизвестными. Трудно сказать, сколько водорода в центре Солнца успело превратиться в гелий за время существования нашего светила. Трудно сказать, идет ли там перемешивание вещества, а если идет, то с какой интенсивностью. Приходится строить модели с разными «вводными». К счастью, в основе они не очень сильно отличаются друг от друга.
Температура вещества в центре Солнца достигает 14–15 млн К. Плотность газа составляет 140–180 г/см3. При этом вещество в центре Солнца остается газом, причем не вырожденным, как в белых карликах, а наоборот, близким к идеальному газу. Следовательно, к нему могут применяться классические газовые законы.
Сказанное может повергнуть в легкую оторопь: вещество с плотностью, на порядок превышающей плотность тяжелых металлов, и давлением в 340 млрд атмосфер – газ, да еще идеальный? И тем не менее это так. Почти. Вспомним, что такое идеальный газ. Это газ, в котором столкновения частиц сводятся к абсолютно упругим соударениям без какого бы то ни было иного взаимодействия между ними. Сейчас мы поймем, что в недрах Солнца почти так и есть.
Чтобы преодолеть кулоновские силы отталкивания и слипнуться в ядро дейтерия, хотя бы одному из двух протонов надо иметь энергию порядка 1000 кэВ. Распределение энергий частиц в газе, как мы знаем из школьного курса физики, максвелловское, то есть количество высокоэнергичных частиц падает по гиперболическому закону. Если подсчитать среднюю энергию протона в центре Солнца, то она составит всего-навсего 1 кэВ. Частиц с энергией 1000 кэВ просто не будет. С точки зрения классической физики, звезды типа
Но звезды все же излучают, а значит, природа нашла выход из положения. Согласно законам квантовой механики, протоны, имеющие энергию значительно меньше требуемой, скажем, 20 кэВ, все-таки могут с вероятностью, отличной от нуля, реагировать друг с другом. И протоны с такими энергиями в центре Солнца уже есть.
Их мало, конечно. И невелика вероятность реакции между двумя протонами с энергиями всего-навсего в десятки килоэлектронвольт, причем с уменьшением энергии частиц вероятность реакции между ними резко падает. (Именно поэтому главная последовательность диаграммы Герцшпрунга – Рессела идет круто вниз в области красных карликов.) Подсчитано, что в условиях солнечных недр любой случайно выбранный протон вступит в реакцию со своим собратом в среднем через 10 млрд лет.
Казалось бы, чудовищный срок. Однако это именно то, что надо для обеспечения современной светимости Солнца. Вероятность реакции между протонами крайне низка, зато протонов очень много, так что в результате мы на Земле не особенно мерзнем. А кто жалуется на холод, тот пусть спросит бедуина в аравийской пустыне, холодно ли ему днем. Вопрошающему повезет, если ему попадется бедуин, наделенный чувством юмора.
Следующий этап протон-протонной реакции, напротив, идет очень быстро, в среднем за 5 с. Столько времени нужно, чтобы ядро дейтерия поглотило еще один протон и превратилось в ядро гелия-3. И наконец, на третьем этапе два ядра гелия-3 сливаются, образуя ядро гелия-4 и два протона. На это в среднем уходит «всего» миллион лет.
Запишем этапы реакции:
1Н + 1Н -> 2D + позитрон + нейтрино + 1,44 МэВ (1010 лет)
2D + 1Н ->3Не + гамма-квант + 5,49 МэВ (5 секунд)
3Не + 3Не ->4Не – ИН +1Н + 12, 85 МэВ (106 лет)
Не вся высвободившаяся в результате этой цепи реакций энергия передается звезде – часть ее уносят нейтрино. Все же при образовании одного ядра гелия звезда получает 26,2 Мэв, или 4,2 х 10– 5 эрг.
Существует – причем не только в теории, но и в реальности – и другая ветвь той же реакции. Ядро гелия-3 может прореагировать с ядром обычного гелия-4, после чего образуется ядро бериллия-7. Это ядро может захватить протон и превратиться в ядро бора-8 или захватить электрон и превратиться в ядро лития. В первом случае ядро бора-8 претерпевает бета-распад, превращаясь в ядро бериллия-8 с попутным образованием позитрона и нейтрино. (Именно эти солнечные нейтрино были впервые обнаружены на перхлорэтиленовом детекторе; об этом ниже.) Бериллий-8 весьма неустойчив и быстро распадается на два ядра гелия-4. Во втором случае, когда образуется ядро лития-7, оно захватывает протон и опять-таки превращается в бериллий-8, который охотно распадается на две альфа-частицы (ядра гелия-4). Словом, на какие бы ухищрения природа здесь ни шла, какие бы варианты реакций ни предлагала, в результате водород все равно превращается в гелий, выделяя при этом энергию.