Чтение онлайн

на главную - закладки

Жанры

Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир

Строгац Стивен

Шрифт:

Для формулы, родившейся тринадцать веков назад, это совсем немало.

11.Инструменты силы

Если вы были страстным любителем телевидения в 1980-х, то, конечно, помните сериал под названием «Детективное агентство “Лунный свет”» с живыми диалогами и романтическими отношениями между партнерами по фильму. В нем пару проницательных частных детективов Дэвида Эддисона и Мэдди Хэйс исполняли Брюс Уиллис и Сибилл Шепард.

В ходе расследования одного особенно жестокого дела Дэвид интересуется у помощника, кто ему кажется наиболее вероятным преступником. «Ума не приложу», — отвечает Мэдди. «А вы знаете, чего я не понимаю?» — спрашивает Дэвид. «Логарифмов?» — догадывается помощник. И Дэвид, реагируя на взгляд Мэдди, произносит: «А что? Вы их понимаете?»

Это

довольно точно отражает всеобщее отношение к логарифмам. Большинство людей после окончания средней школы их никогда уже больше не используют, по крайней мере осознанно, и не обращают внимания на логарифмы, скрывающиеся за кулисами повседневной жизни.

То же самое касается и многих других функций39, рассматриваемых в высшей математике и началах анализа. Степенные функции, показательные функции — в чем их суть? В этой главе я хочу помочь вам по достоинству оценить их полезность, даже если вам никогда не приходилось нажимать на кнопки инженерного калькулятора.

Математику необходимы функции по той же причине, что и строителю молотки и сверла. Инструменты преобразовывают вещи. То же самое делают функции. Поэтому математики часто обращаются к ним для выполнения преобразований. Но вместо дерева и стали функции обрабатывают числа и графики, а порой и другие функции.

Чтобы понять, что я имею в виду, давайте построим график уравнения у = 4 – х2. Возможно, вы помните, как это делается: сначала вы рисуете плоскость xy с горизонтальной осью х и вертикальной у. Затем для каждого значения х вычисляете соответствующее значение y; эта пара чисел является координатами одной точки графика на плоскости xy. Например, если х = 1, то уравнение говорит, что y = 4 – 12 = 4 – 1 = 3. Таким образом (х, у) = (1, 3) координаты точки. После того как вы вычислите и построите еще несколько точек на плоскости, возникнет следующая картина.

У нас получилась изогнутая математическими плоскогубцами кривая. В уравнении для у функция, которая преобразует x в x2, ведет себя подобно обычному инструменту для сгибания материала. Когда ее прикладывают к любой точке на оси х (прямую от точки х до точки х2 можно представить в виде прямого куска проволоки), плоскогубцы изгибают и вытягивают этот кусок проволоки в направлении вниз так, чтобы получилась изогнутая арка, как показано на рисунке.

А какую роль играет число 4 в уравнении у = 4 – x2? Это гвоздь, на который повесят картину на стену. Он поднимает изогнутые арки из проволоки на 4 единицы вверх. Так как при этом все точки кривой поднимаются на одинаковую высоту, то она считается постоянной функцией.

Данный пример иллюстрирует двойственный характер функций. С одной стороны, это инструменты: x2 изгибает часть оси х, а 4 — ее лифт. С другой — строительные блоки: 4 и x2 можно рассматривать как составные части более сложной функции 4 – х2, точно так же, как провода, аккумуляторы и транзисторы — составные части радиоприемника.

Как только вы начинаете смотреть на мир подобным образом, сразу же везде замечаете функции. Описанная выше в виде арки кривая, в математике называемая параболой, — это автограф, который дала квадратичная функция за кулисами. Ищите ее, когда любуетесь струями фонтана. И если вам доведется побывать в международном аэропорту Детройта, обязательно остановитесь у фонтана терминала Delta, чтобы насладиться потрясающими резвящимися параболами40.

Параболы и константы ассоциируются

с более широким классом функций — степенными функциями вида xn, в которых значение переменной x возводится в фиксированную степень n. Для параболы n = 2, для константы n = 0.

Разные значения n дают различные ручные инструменты. Например, возведение х в первую степень (n = 1) дает функцию, которая работает как пандус, отражая устойчивое увеличение роста или спада. Такая функция называется линейной, потому что ее графиком, построенным по точкам с координатами (x, y), является прямая линия. Если вы оставите на улице пустое ведро во время непрекращающегося ливня, то количество воды в нем будет расти линейно во времени.

Еще один полезный инструмент — обратно пропорциональная квадратичная функция у = 1/x2, здесь n = –2. (Степень этой функции равна –2, так как x2 стоит в знаменателе.) Эта функция хороша для описания затухания волн и ослабления сил в зависимости от расстояния х. Например, так затихает звук по мере удаления от источника.

Такие степенные функции служат строительными блоками, используемыми учеными и инженерами для описания роста и спада, которые происходят не слишком быстро. Но если нужен математический динамит, пора распаковать экспоненциальные функции. Они описывают все возможные быстропротекающие процессы — от цепных ядерных реакций до пролиферации бактерий в чашке Петри. Наиболее известный пример — функция у = 10x, то есть 10 возведено в степень х. Не путайте ее с ранее рассмотренными степенными функциями. Здесь показатель (степень х) является переменной, а основание (число 10) постоянной, тогда как в степенной функции, подобной х2, все наоборот. Такая перемена мест (переменной и константы) приводит к огромной разнице между этими функциями: при увеличивающемся значении x экспоненциальная функция с показателем x в конечном итоге растет быстрее любой степенной функции, независимо от ее степени. Экспоненциальный рост — невообразимо быстрый рост.

Вот почему так трудно сложить лист бумаги пополам больше семи-восьми раз41. Каждое сложение листа удваивает его толщину, что приводит к ее (толщины) увеличению в геометрической прогрессии. В то же время длина, каждый раз сжимаясь пополам, уменьшается по экспоненциальному закону. После семи сложений толщина стандартного листа из записной книжки становится больше его длины, и поэтому дальше его складывать нельзя. Причем неважно, сколько усилий прикладывает человек при складывании. Предположим, лист можно сложить n раз — в результате стопка должна иметь 2n слоев. Здесь не может быть линейной зависимости, и еще одно сложение невозможно, если толщина стопки больше ее длины.

Задача считалась нерешаемой, пока в 2002 году Бритни Галливан, ученица старшего класса средней школы, не доказала обратное. Сначала она вывела формулу

L =

(2n + 4) (2n – 1),

которая позволяла посчитать максимальное количество сложений n, где Т — толщина листа бумаги, L — его длина, и складывается он только в одном направлении. Обратите внимание на запрещающее присутствие экспоненциальной функции 2n в двух местах: первый раз для учета удвоения толщины пачки при каждом сложении, а во второй — чтобы учесть двукратное сокращение ее длины.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Миф об идеальном мужчине

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.23
рейтинг книги
Миф об идеальном мужчине

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Вечный. Книга V

Рокотов Алексей
5. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга V

Надуй щеки!

Вишневский Сергей Викторович
1. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки!

Командир штрафбата

Корчевский Юрий Григорьевич
3. Я из СМЕРШа
Фантастика:
боевая фантастика
попаданцы
альтернативная история
7.06
рейтинг книги
Командир штрафбата

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Зайти и выйти

Суконкин Алексей
Проза:
военная проза
5.00
рейтинг книги
Зайти и выйти

Плеяда

Суконкин Алексей
Проза:
военная проза
русская классическая проза
5.00
рейтинг книги
Плеяда

Дело Чести

Щукин Иван
5. Жизни Архимага
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Дело Чести

Темный Лекарь 9

Токсик Саша
9. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Темный Лекарь 9

Идеальный мир для Социопата 3

Сапфир Олег
3. Социопат
Фантастика:
боевая фантастика
6.17
рейтинг книги
Идеальный мир для Социопата 3