Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Шрифт:
Представьте себе, что популярный новый фильм показывают в местном кинотеатре. Это романтическая комедия, и сотни пар (намного больше, чем может вместить кинотеатр) выстроились в кассу в очередь за билетами, хотя и отчаялись попасть внутрь. Как только счастливая пара получает билеты, она пробирается в зал и ищет два места рядом. Для простоты предположим, что влюбленные выбирают эти места наугад, там, где есть свободные. Другими словами, они не заботятся о том, будут ли сидеть близко к экрану или далеко от него, на проходе или в середине ряда. Пока они рядом друг с другом, они счастливы.
Допустим, ни одна пара не будет пересаживаться, чтобы освободить место для другой.
Сначала, пока в кинотеатре довольно пусто, не возникает никаких проблем. Каждая пара легко находит два места рядом. Но через какое-то время остаются только одиночные места и одиночные промежутки между парами, которые двое не хотят занимать. В реальной жизни люди часто намеренно создают такие промежутки: чтобы положить пальто или не опираться на один подлокотник с неприятным незнакомцем. Но в нашей модели эти промежутки случайны.
Вопрос: если больше не осталось мест для пар, сколько свободных мест еще есть в кинотеатре?
Ответ следующий: оказывается, в кинотеатре с большим залом (когда в ряду много мест) доля пустующих мест примерно равна
что приближается к 13,5%72.
Хотя сам расчет слишком сложный для того, чтобы его здесь привести, легко заметить, что 13,5% находится в правой части диапазона между двумя крайними значениями. Если бы все пары сидели вплотную друг к другу, пустующих мест не было бы.
Тем не менее, если бы они расположились максимально нерационально, то есть всегда оставляя возле себя свободное место (и оставив свободное место в каждом ряду у прохода: на одном или на другом конце ряда, как показано на рисунке ниже), то пустовала бы одна треть мест, потому что каждая пара заняла бы три места: два для себя и одно промежуточное.
Догадываясь, что произвольный выбор должен лежать где-то между идеально рациональным и совершенно неэффективным, иначе говоря, быть средним между 0 и
Здесь большое число вариантов возникло из-за того, что у пар был богатый выбор в огромном кинотеатре. Наш следующий пример тоже об организации пар, только теперь не в пространстве, а во времени. То, о чем я говорю, касается довольно болезненной проблемы: со сколькими партнерами я должен встретиться прежде, чем выберу себе супругу73. Реальный вариант этой задачи слишком сложен для математического расчета. Рассмотрим упрощенную модель. Несмотря на допущения, невозможные в жизни, в ней все еще сохраняется некоторая душераздирающая романтическая неопределенность.
Предположим, вам известно, сколько потенциальных
Предположим также, что вы могли бы оценить этих людей однозначно (то есть выбрать наилучшего), если бы увидели их всех вместе. К несчастью, это невозможно. Вы встречаете их только по одному и в случайном порядке. Таким образом, вы не можете знать, находится ли предмет ваших мечтаний с первым номером из вашего списка прямо за углом или вы уже встречались и расстались.
И правила этой игры таковы: как только вы позволите кому-то уйти, он (или она) тут же уходит. Второго шанса нет.
Наконец представим, что вы хотите остепениться. В этом случае, если вы порываете с тем «наилучшим на сегодняшний день», кого в прошлом не поместили в верхнюю часть списка, вы будете считать свою личную жизнь неудачной.
Есть ли надежда найти истинную любовь? Если да, то что нужно сделать, чтобы обеспечить себе наибольшие шансы?
Хорошая стратегия, хотя и не самая оптимальная, — разделить свою жизнь с момента, когда у вас начались романтические отношения, и до настоящего времени на две равные части. В первой половине вы мужчина нарасхват[28], а во второй — готовы к серьезным отношениям и собираетесь схватить первого же партнера, который будет лучше тех, с кем вы встречались до этого.
Следуя такой стратегии, есть по крайней мере 25-процентный шанс найти предмет мечтаний. И вот почему: шансов встретить его во второй половине жизни, когда вы созрели для серьезных отношений, у вас 50 на 50, и столько же встретить наилучшего на сегодня в первой половине жизни, когда вы еще легкомысленны. Вероятность, что произойдут оба события, составляет 25%. В этом случае вы найдете свою истинную любовь.
А все потому, что «наилучший на сегодняшний день» очень высоко поднял планку. Никто из тех, кого вы повстречаете после того, как будете готовы к серьезным отношениям, не будет привлекать вас так, как предмет мечтаний. Но даже в этот момент вы, возможно, станете сомневаться, что предмет мечтаний и есть тот единственный, кто сможет преодолеть планку, поставленную «наилучшим на сегодняшний день».
Однако оптимальная стратегия — начать серьезный поиск партнера немного раньше, после 1/е, или около 37% от вашей потенциальной взрослой жизни. Это даст вам 1/е шансов найти свою вторую половину.
Разумеется, при условии, что она в это время не будет играть в e– игры.
20. Любит не любит
«Весной, — писал Теннисон, — воображение молодого человека с легкостью поворачивается к мыслям о любви». Увы, потенциальный партнер молодого человека может иметь собственные представления о любви, и тогда их отношения будут полны бурных взлетов и падений, которые делают любовь столь волнующей и столь болезненной. Одни страдальцы от безответной ищут объяснение этих любовных качелей в вине, другие — в поэзии. А мы проконсультируемся у исчислений.
Представленный ниже анализ будет насмешливо-ироничным, но он затрагивает серьезные темы. К тому же если понимание законов любви может от нас ускользнуть, то законы неодушевленного мира в настоящее время хорошо изучены. Они принимают форму дифференциальных уравнений, описывающих изменение взаимосвязанных переменных от момента к моменту в зависимости от их текущих значений. Возможно, у таких уравнений мало общего с романтикой, но они хотя бы могут пролить свет на то, почему, по словам другого поэта, «путь истинной любви никогда не был гладким».