Управляющий мозг: Лобные доли, лидерство и цивилизация
Шрифт:
Когда организм подвергается воздействию новых конфигураций сигналов внешнего мира, сила синаптических контактов (лёгкость прохождения сигнала между нейронами) и локальных биохимических и электрических свойств постепенно меняются в сложных распределённых комплексах. Это и есть процесс обучения, как мы его представляем сегодня 1 .
Макроскопический взгляд
Нейроны группируются в связанные структуры, ядра и области. Каждая структура состоит из миллионов нейронов. Ядра и области представляют макроскопические единицы мозга, и картина связности между ними представляет макроскопическую организацию мозга. Мозг является
Для эвристических целей я прибегаю к метафоре дерева. У дерева есть ствол и ветви. Ветви разделяются на ветки. На концах веток находятся плоды. В некотором смысле, мозг организован подобным образом. Можно думать о мозге как о «дереве возбуждения и активации». Его ствол отвечает за общее физиологическое возбуждение и активацию, необходимые для функции различных мозговых структур, плодов. Это анатомическая ось мозга, ствол мозга. Массивное повреждение ствола мозга нарушает сознание и может привести к коме.
Внутри компактного стволового центра мозга содержатся многочисленные ядра, на которых строится сложная система проводящих путей. Во многих случаях ядра и их проекции являются биохимически специфическими, привязанными к определённому нейротрансмиттеру; в других случаях они являются биохимически сложными, включающими различные нейротрансмиттеры. Это ветви и ветки «дерева активации». Каждая ветвь содержит проекционные связи с определённой частью мозга, гарантируя её активацию. Несколько десятилетий тому назад было обычным описывать эти ветви суммарно как восходящую ретикулярную активизирующую систему (ARAS) 2 . Сегодня во все возрастающей степени удаётся идентифицировать её отдельные нейроанатомические и биохимические компоненты, изучать эти компоненты раздельно. Повреждение любой отдельной ветви не разрушит сознание в глобальном смысле, но будет препятствовать специфической функции мозга. Каждая ветвь дерева возбуждения проецируется на различные компоненты мозга, каждый из которых обладает своим собственным набором функций.
В мозге имеется множество подкорковых структур. В ходе эволюции подкорковые структуры развивались раньше коры головного мозга, и на протяжении миллионов лет они направляли сложное поведение различных организмов. У современных рептилий и даже птиц новая кора представлена лишь минимально 3 . В филогенетически древнем, «некорковом» мозге могут быть выделены два класса структур: таламус и базальные ганглии. На ранней стадии эволюции центральная нервная система разделилась на две боковые половины. Поэтому каждая из описываемых здесь структур мозга состоит из двух одинаковых половин: левой и правой.
Несмотря на некоторое функциональное пересечение, таламус и базальные ганглии были наделены отчётливо различными функциями. В древнем, предкорковом мозге таламус отвечал большей частью за получение и переработку информации из внешнего мира, а базальные ганглии отвечали за моторное поведение и действие. Таким образом, разделение восприятия и действия в архитектуре мозга представляется с самого начала основополагающим. Дерево активации разделяется на два основных ответвления, одно проецируется отдельно на подкорковые механизмы восприятия (дорзальная ветвь), другое — на подкорковый субстрат действия (вентральная ветвь).
Часто рассматриваемый как единая структура,
Тесно связана с таламусом структура, называемая гипоталамусом. В то время как таламус отслеживает внешний мир, гипоталамус отслеживает внутренние состояния организма и помогает поддерживать их в рамках адаптивных, гомеостатических параметров. Гипоталамус также является собранием различных ядер, каждое из которых соотносится с различным аспектом гомеостазиса: приём пищи, приём жидкости, температура тела и так далее. Вместе таламус и гипоталамус называются диэнцефалон 5 .
Базальные ганглии включают хвостатое ядро, подушку зрительного бугра и бледный шар. В предкорковом мозге эти структуры играли центральную роль в инициировании действий и в управлении движениями. В развившемся мозге млекопитающих базальные ганглии находятся под особенно жёстким контролем со стороны лобных долей и работают в сотрудничестве с ними. Фактически, сотрудничество настолько тесное, что я склонен думать о хвостатом ядре как о части «больших лобных долей».
Структура, называемая амигдала (миндалина), также рассматривается как одно из базальных ядер, но она обслуживает несколько иную функцию. Амигдала регулирует те взаимодействия организма с внешним миром, которые являются решающими для выживания индивида и вида: решения атаковать или скрыться, спариваться или нет, заглатывать или нет. Она предоставляет быструю, прекогнитивную, аффективную оценку ситуации под углом зрения её значения для выживания 6 .
Мозжечок является большой структурой, прикреплённой к задней части (или, как скажет нейроанатом, к дорзальному аспекту) ствола мозга. Его анатомия в миниатюре параллельна анатомии всего мозга: стержень, называемый червём мозжечка, и два мозжечковых полушария. Мозжечок важен для движений, в особенности для координации тонких движений с сенсорной информацией. Но последние исследования показали также, что мозжечок тесно связан с лобной корой и участвует в сложном планировании 7 .
На относительно поздней стадии эволюции мозга начала развиваться кора головного мозга, сначала археокортекс, затем палеокортекс 8 . Они включают гиппокамп и цингулярную кору. Гиппокамп, «морской конёк», составлен из двух длинных структур, прикреплённых внутри височных долей (или, как сказал бы нейроанатом, к их медиальному аспекту). Гиппокамп играет решающую роль для памяти. Некоторые учёные убеждены в том, что он специально посвящён овладению пространством 9 . Я полагаю, что это узкий взгляд, подсказываемый экспериментами над животными, где пространственное обучение является единственно возможной парадигмой для изучения памяти. У людей гиппокамп также задействован в других формах памяти, таких как словесная память 10 .