В поисках общей теории роста человечества
Шрифт:
Обычно, когда говорят о растущей изолированной популяции, то имеют в виду свободный рост, т. е. рост никем и никак не управляемый, не испытывающий никаких внешних воздействий и происходящий в естественных природных условиях. Причины свободного роста изолированной популяции заключены в двух процессах: процессе размножения каждой элементарной ячейки популяции и процессе взаимодействия между всеми этими ячейками.
Если же существуют какие-то факторы, целенаправленно воздействующие на рост, т. е. как-то его изменяющие, регулирующие, то такой рост следует считать управляемым. Примером управления
Другой пример – рост численности домашних животных. Здесь воздействие может варьироваться в широких пределах: от простой защиты от хищников и обеспечения кормом на пастбищах до постройки специально организованных ферм, где создаются все необходимые условия для роста и размножения. Вмешиваясь в ход природных процессов, человек может остановить исчезновение редких животных и восстановить их былую численность.
Все это примеры внешнего, не автономного воздействия на рост популяции. Но существует еще одна возможность: управление ростом изнутри, через связи, существующие между членами популяции. И здесь примером может служить рост человеческих сообществ. Можно целенаправленно с помощью специально созданных программ, без всякого оружия, только информацией – свести на нет, уничтожить целый народ.
И наоборот, используя разнообразные программы жизнесбережения, работающие изнутри, повысить естественный прирост целого этноса. В дальнейшем мы покажем, что если численность изолированной рассредоточенной популяции и скорость ее роста связаны нелинейно, то причиной такой связи может и не быть ПОС между приростом и численностью (N<—>N/t) или ООС между этими величинами, а закон, их связывающий, может и не быть законом причинным. Такой нелинейный закон роста популяции может описывать всего лишь функциональную, непричинную связь между ее численностью и естественным приростом. Т. е. представлять собой не более, чем регрессионную зависимость, не претендующую на какой-либо каузальный смысл.
Возможна такая механическая аналогия. Малые свободные колебания математического маятника – колебания гармонические. Если приложить к нему вынуждающую силу, меняющуюся со временем, колебания станут вынужденными. Если вынуждающая сила мала, то вдали от резонанса вынужденные колебания будут мало отличаться от свободных. Если же внешнее возмущающее воздействие велико, то закон движения маятника может быть в принципе каким угодно в пределах, которые определяются массой груза, длиной нити и силами трения.
Итак, рост популяции может быть как свободным, так и управляемым. Управляемый рост отличается от свободного наличием управляющей системы, стоящей над популяцией и способной изменять ее свободный рост в тех границах, которые определены биотическим потенциалом популяции и сопротивлением среды.
Например, превратить естественный экспоненциальный рост в рост гиперболический. Поскольку управляемый рост может быть осуществлен только достаточно сложной системой управления, как минимум обладающей памятью, то момент детерминации может быть расположен здесь позднее во времени того момента, когда происходит
Понимать это надо так: управляющая система непрерывно контролирует текущую численность популяции и воздействует на внутрипопуляционные связи таким образом, чтобы сделать максимально вероятной последовательность ранжированных событий, каждое из которых заключается в достижении численности популяции в определенный момент времени в будущем некоторого предустановленного значения.
Задача каузального анализа в таком случае заключается в том, чтобы найти целевой, телеологический каузальный закон, управляющий ростом, и механизм его реализации.
Модель степенного роста, или рассказ о том, как не растут популяции
Закон степенного роста (убывания) какой-либо величины во времени – это зависимость вида y = C(t – t0)n, где показатель n не равен нулю или единице и может быть положительным, отрицательным, целым или дробным.
Может ли численность роста какой-либо популяции на каком-то этапе своего роста описываться степенным законом? Это возможно лишь при том условии, что на этом этапе прирост численности за небольшой промежуток времени будет пропорционален некоторой степени численности, причем показатель этой степени не должен быть равен единице.
В таком случае вопрос можно сформулировать так: может ли скорость роста численности популяции выражаться в виде степенного закона (3) рис. 1?
Рис. 1. Степенной и экспоненциальный законы роста численности популяции.
При разных значениях параметра m закон (3) описывает параболический, экспоненциальный и гиперболический рост. Возьмем для определенности значения m = 0, 1, 2, которые соответствует трем наиболее часто встречающимся в природе законам: линейному, экспоненциальному и гиперболическому.
Из них только закон экспоненциального роста имеет встроенный масштаб времени или характерное время удвоения численности популяции, что ясно уже из соображений размерности, т. к. показатель экспоненты представлен в виде произведения константы , умноженной на время t.
Следовательно, величина обратная , определяющая этот встроенный масштаб времени, должна иметь размерность времени, поскольку в показателе экспоненты может стоять только безразмерная величина.
Термин «встроенный масштаб времени», возможно, является не совсем удачным, поскольку закон экспоненциального роста не содержит в себе какого-то единственного масштаба, в котором можно измерять время протекания процесса. А содержит постоянную времени через которую этот масштаб: время удвоения численности, какое-то другое характерное время, может быть выражен.
Природа экспоненциального роста такова, что если взять произвольную точку на оси времени и откладывать от нее интервалы произвольной, но равной длительности, то численность популяции на последовательности этих интервалов будет расти по закону геометрической прогрессии.
Что в корне отличает его от степенного параболического или гиперболического роста. Для которых не существует встроенного масштаба времени – неизменного времени удвоения численности, т. к. для них это время либо возрастает, либо убывает.