Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
Шрифт:
Если бы вся теплота Q O.C.превратилась в работу, то энтропия исчезла бы совсем. Если же в работу L превратилась бы только часть теплоты Q O.C., а остальную ее часть Q 2двигатель отдал бы обратно, то все равно отданная энтропия была бы меньше, чем полученная так как Q 2< Q O.C.и S 2= Q 2/T O.C.< Q O.C./T O.C.
Чтобы
Они подошли к понятию энтропии с другой стороны, так сказать, «изнутри», от молекулярного строения материи. Больцман исследовал законы поведения всего множества молекул, составляющих взаимодействующие части системы, и установил, что существует непосредственная связь энтропии с тем состоянием, в котором эти молекулы находятся.
Каждая молекула обладает в каждый определенный момент определенной энергией, связанной с ее движением и взаимодействием с другими молекулами. Общая внутренняя энергия вещества представляет собой сумму энергий этих частиц. Поскольку молекулы постоянно находятся в хаотическом движении и взаимодействуют между собой, между ними происходит энергетический обмен, приводящий к тому, что энергия все время перераспределяется между ними. Поэтому каждый следующий момент соответствует уже другому микросостоянию системы с другим распределением энергии между молекулами.
Таким образом, микросостояниесистемы — это такое ее состояние в данный момент, при котором для каждой молекулы определены положение в пространстве и скорость. Это, если так можно выразиться, мгновенный снимок системы.
Изучить в такой ситуации хаоса и беспорядка, существующей в каждом микросостоянии, поведение каждой молекулы, чтобы предсказать ее поведение в дальнейшем, практически невозможно. Но это и не нужно: достаточно знать возможные варианты общегоповедения системы, т. е. число всех ее возможных микросостояний.
Число wтаких микросостояний может быть очень велико, огромно, но оно все же не бесконечно, так как число молекул конечно, как и число энергетических уровней, на которых они могут находиться.
Но каково же будет состояние системы, определяемое общими характеристиками (плотность, энергия и т. д.), т. е. ее макросостояниев данных условиях? Какое из многочисленных микросостоянийона «выберет»? Оказывается, зная число и особенности различных возможных микросостояний, можно установить ее наиболее вероятное макросостояние. Этот закон будет статистическим,что, однако, ничуть не снижает его силы и надежности.
Чтобы показать, на чем он основан, используем наглядный пример, приведенный чл.корр. АН СССР Л.М. Биберманом.
Пусть на плоском подносе расположены несколько одинаковых монет. Каждая из них может лежать только в одном из двух положений — гербом вверх («орел») или вниз («решка»). Поскольку оба положения совершенно равновероятны, каждая монета может лечь вверх орлом или решкой; заранее предсказать это невозможно.
Движением подноса можно одновременно подбросить все монеты. Допустим, что вначале они все лежали в строгом порядке — орлом вверх. Поставим вначале вопрос так: можно ли путем последовательных подбрасываний монет на подносе (при которых все они, естественно, будут переворачиваться по-разному) вернуться к исходному положению? В принципе, разумеется, можно. Но сколько нужно для этого подбрасываний? Попробуем определить их число, например, для 10 монет. В этом случае возможны разные варианты («микросостояния»): все десять монет гербом вверх (10^), девять вверх — одна вниз (9^, 1V), восемь вверх — две вниз (8^, 2V )и т. д. до одиннадцатого — все вниз (10V). Этот последний вариант (10V) тоже соответствует полному порядку, только обратному первому (10^).
Все эти варианты на первый взгляд равноправны, равновероятны, но это только на первый взгляд. На самом деле они резко различаются тем, что частота их появления будет неодинакова. Действительно, первый вариант можно реализовать только одним способом, а второй — уже десятью (первая монета орел,
Если свести все данные вместе, то получим такую таблицу:
Всего, следовательно, в сумме возможны w= 1024 микросостояния. Из них состояния «полного порядка» (0V, 10^ и 10V, 0^) встречаются только по 1 разу. Напротив, наиболее далекие от порядка микросостояния (5V, 5^), 4V, 6^), (6V, 4^) встречаются наиболее часто; чаще всего (5V, 5^) — 252 раза.
Таким образом, для получения первоначального порядка нужно встряхнуть поднос не менее 1024 раз! Напротив, перемешать все поровну можно за каких-то (1024/252) четыре встряхивания. Микросостояние полного перемешивания в 252 раза вероятнее, чем состояние полной упорядоченности. Путь от порядка к беспорядку очень короток, но чтобы пройти путь от беспорядка к порядку, нужно поработать намного больше! Здесь мы встречаемся с понятием термодинамической вероятности w,которая определяется числом тех микросостояний,которыми может быть реализовано данное макросостояние.Понятие термодинамической вероятности отличается от понятия математической вероятностислучайного события, которая определяется отношением числа появлений данного события к общему числу испытаний. В данном случае математическая вероятность определялась бы для каждого случая величиной w/w.
В описанном эксперименте мы взяли всего 10 монет. А если их будет больше?
Ниже даны суммарные округленные цифры w микросостояний для числа монет пдо 100:
Это означает, что для возвращения к упорядоченному расположению монет при их числе, например 100, нужно время, большее времени существования солнечной системы [54] — (7 : 8) • 10 9лет.
Но ведь молекул газа в самом малом объеме несоизмеримо больше, чем 100 (при давлении 0,1 МПа и температуре 273 К — около 3x10 9в 1 см 3). Поэтому термодинамическая вероятность wтого, что молекулы равномерно распределятся в любом свободном объеме беспорядочно с мгновенными скоростями, направленными хаотично, чрезвычайно велика; этому соответствует гигантское количество возможных микросостояний w .Напротив, по сравнению с этим вероятность установления микросостояний, в которых будет определенный порядок, совершенно ничтожна. Практически она равна нулю.
54
Если встряхивать поднос 1 раз в секунду.
Рассмотрим три таких упорядоченных состояния.
1. В одной половине сосуда собралось вдвое больше молекул, чем в другой. Соответственно давление p1 в одной половине будет в 2 раза больше, чем р 2в другой — (р 2= 2p 1). Эта ситуация схематично показана на рис. 3.6, а.