Чтение онлайн

на главную - закладки

Жанры

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
Шрифт:

4.3. Эксергетический баланс и КПД

Энтропия — основная величина, определяющая возможность (или невозможность) протекания процессов в любых системах преобразования вещества и энергии с позиций второго закона термодинамики. Суммарная энтропия неизменна или растет — процесс возможен; уменьшается — невозможен. В рассмотренных выше случаях мы успешно пользовались именно этим фундаментальным свойством энтропии для того, чтобы определить, что может быть в энергетических превращениях и чего быть не может.Однако не только этим свойством определяются возможности практического использования энтропии. Она может помочь в решении другой, не менее важной задачи — определить качествоэнергетических превращений (а следовательно, и любых устройств, в которых они производятся).

Когда говорят об энергосберегающей технологии, об уменьшении потерь энергии, то речь по существу идет не об энергии в количественном

смысле.Нужно четко понимать, что в количественном отношении энергию сберегать не нужно,об этом автоматически заботится первый закон термодинамики — закон сохранения энергии. Любое техническое устройство (да и вообще все на свете, что живет и движется) действует всегда так, что энергия сохраняется: сколько ее входит, столько неизбежно и выходит; она никогда не теряется. Поэтому сбережение энергии — это по существу сбережение ее качества.Именно об этой качественной стороне энергии писал Энгельс в «Диалектике природы». Любая технология и технические устройства, в которых она осуществляется, тем совершеннее, чем меньше будет возрастать энтропия в результате их функционирования, т. е. чем меньше будет «портиться» энергия.

Поясним это на простом примере — тепловой электростанции. В ней протекает целая цепочка энергетических превращений. Сначала химическая энергия топлива и окислителя (кислорода воздуха) превращается во внутреннюю энергию раскаленных продуктов сгорания; затем эта энергия в форме теплоты передается воде и превращается во внутреннюю энергию пара. В свою очередь энергия пара в турбине превращается в механическую, а та — уже в электрическую. Часть внутренней энергии пара отводится из конденсатора охлаждающей водой и выбрасывается в окружающую среду. В целом вся эта последовательность укладывается в вариант 4схемы энергетических превращений на рис. 3.7. Часть энергии (от 35 до 40%) преобразуется в полностью упорядоченную, безэнтропийную электроэнергию, зато другая, большая ее часть, низкокачественная, с повышенной энтропией, сбрасывается в окружающую среду. Совершенно очевидно, что чем больше возрастание энтропии на каждом этапе энергетических превращений (т. е. чем хуже они организованы), тем больше будет и суммарный рост энтропии. А это неизбежно приведет к уменьшению безэнтропийной доли энергии на выходе (т. е. электроэнергии) и увеличению доли сбрасываемой высокоэнтропийной теплоты. В электроэнергию перейдет не 35-40% исходной химической энергии, а меньше — 30, 25% и т. д. То же самое будет и в любой другой технической системе, что бы она ни производила — теплоту, холод, каучук или металл…

Чем менее совершенны технологические процессы и соответствующее им оборудование, тем больше рост энтропии и тем меньше целевых продуктов будет получено при той же затрате энергии. Таким образом, экономия энергоресурсов всегда сводится в конечном счете к сохранению качестваэнергии, к борьбе против роста энтропии.

Однако при всех достоинствах энтропии (и как критерия возможности осуществления процессов, и как меры, характеризующей качество энергетических превращений в них) ее непосредственно использовать для анализа энергетических превращений нельзя. Это объясняется тем, что энтропия и ее изменения не показывают непосредственноколичества энергии — как того, которым мы в каждом случае можем располагать и которое можем полезно использовать, так и того, которое теряется бесполезно. Конечно, можно их найти, зная энтропию, но каждый раз для этого нужен специальный расчет с привлечением дополнительной информации. Чтобы иметь эти количества сразу и одновременно определять, нарушается второй закон или нет, было изобретено специальное термодинамическое понятие — эксергия[1.18-1.19] [61] . В чем ее смысл?

61

Оно (правда, под другим названием) появилось не намного позже самого второго закона термодинамики — в 80-х годах прошлого века, но нашло широкое применение только в наше время. Термин «эксергия» (т. е. внешняя, способная проявиться в деле энергия) предложил югославский ученый З.Рант в 1956 г.

Мы уже видели, что любая упорядоченная энергия (с энтропией S = 0,рис. 3.7) может быть всегда полностью переведена в любой другой вид энергии; напротив, если энергия в той или иной степени неупорядочена (S > 0), то на ее способность к превращениям второй закон налагает определенное ограничение. Чем больше эта энтропия, тем энергия менее качественна и тем меньше высококачественной (безэнтропийной) энергии (например, работы или электроэнергии) она в данных условиях может дать. Это означает, что безэнтропийная энергия может служить как бы эталоном, общей мерой качества, работоспособности любого вида энергии. Она и была названа эксергией. В такой общей мере (эксергии), конечно, «спрятана» внутри энтропия

как некая базовая величина; это необходимо, но недостаточно. Кроме нее в эксергию неизбежно должны входить и другие величины, характеризующие как энергию, так и ту окружающую среду, в которой энергия используется.

Действительно, представим себе, например, что мы располагаем 100 единицами (кДж) теплоты Qпри разных температурах T = 500, 1000 и 1500 К. Отнеся Qк T, мы будем знать энтропию, но ответа на вопрос, какую работу можно получить, располагая этой теплотой (т. е. какова его эксергия), мы не получим. Для этого нужно найти ее работоспособность, эксергию, т. е. максимальную работу, которую она может дать.

Эта величина — эксергия теплоты Eq — определяется по той самой формуле Карно-Клаузиуса, о которой мы уже говорили в предыдущей главе (L = Q•(T 1– T 2)/T 1). Кроме температуры Т 1в формулу входит и температура теплоприемника Т 2, которая в нашей задаче соответствует температуре окружающей среды Т О.С.. Примем ее равной 300 К (+27 °С).

Тогда работоспособность (эксергия) 100 кДж теплоты составит: для первого случая Eq 1= 100•(500-300)/500 = 40 кДж, для второго — Eq 2= 100•(1000-300)/1000 = 70 кДж и для третьего Eq 3= 80 кДж.

Очевидно, что при других Т О.С.значения эксергии будут тоже другими, поэтому учитывать ее нужно обязательно.

Характерно, что сторонники «энергетической инверсии», т. е. извлечения теплоты из окружающей среды, превращения ее в работу и создания на такой основе ppm-2, не признают очевидного факта зависимости работоспособности теплоты от температуры. Это и естественно. Согласие с существованием такой зависимости неизбежно приводит к краху всей концепции ppm-2, поскольку «теплота окружающей среды» при Т = Т О.С.никакой работы дать не может. Тем не менее В.К. Ощепков пишет: «Калории есть калории, независимо от того, при какой температуре они измерены» и далее, чтобы не оставить никаких сомнений в смысле этого утверждения: «В природе нет и не может быть энергии более ценной и менее ценной — энергия всегда есть энергия» [3.1].

Естественно, что никаких научных доказательств этого, мягко говоря, странного тезиса не приводится. Игнорируется не только все, что сделано в термодинамике за последние 150 лет, прошедшие со времен Карно, но и все, что мы наблюдаем в природе и используем в технике.

Аналогично тому, как это делается для потока теплоты, можно определить и эксергию любого вида внутренней энергии, связанной с каким-либо телом. В определении эксергии в зависимости от того, с какой энергией мы имеем дело, могут участвовать не только температура, но и другие величины, например давление.

Если мы располагаем, например, баллоном, содержащим под определенным давлением р 1= 10 МПа, то в земной атмосфере с давлением р 2= 0,1 МПа он будет иметь работоспособность, которую можно реализовать, заставив его, скажем, вращать турбину, в которой газ расширится до 0,1 МПа.

Но если поместить такой баллон, например, в венерианскую атмосферу при р 2= 10 МПа, или в глубину моря, где такое же давление, то работоспособность (эксергия газа) в нем будет равна нулю (давления р 1и р 2равны — газ в баллоне энергетически «мертв»).

Работоспособность — эксергия вещества — энергоносителя может определяться не только различием с окружающей средой в температуре и давлении. Не менее важна и разница в химическом составе. Если она есть, — существует и эксергия, которая может быть превращена в работу или другую безэнтропийную энергию с помощью соответствующего устройства. Это можно пояснить тоже «космическим» примером. Природный газ (в основном метан) имеет высокую работоспособность в среде воздуха или еще большую в среде кислорода. Но если поместить его в метановую атмосферу (где-нибудь на Юпитере), его работоспособность исчезнет — эксергия станет равной нулю. Напротив, воздух в этих же условиях будет прекрасным «топливом» с большой работоспособностью.

Нетрудно видеть, что все приведенные примеры аналогичны тем, которые приводились ранее (рис. 3.6) при разборе понятия энтропии. Эксергия (возможность получить работу) имеется, если существуют разности потенциалов интенсивных величин — температур, давлений или химических составов. Если их нет — система энергетически мертва — энтропия имеет максимальное значение.

Разница между последними примерами и показанными на рис. 3.6 состоит в том, что роль одной из половин сосуда играет окружающая среда, что в большей мере соответствует реальным техническим задачам.

Поделиться:
Популярные книги

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Хозяйка покинутой усадьбы

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка покинутой усадьбы

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Вернуть Боярство

Мамаев Максим
1. Пепел
Фантастика:
фэнтези
попаданцы
5.40
рейтинг книги
Вернуть Боярство

Офицер-разведки

Поселягин Владимир Геннадьевич
2. Красноармеец
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Офицер-разведки

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Инвестиго, из медика в маги. Том 6. Финал

Рэд Илья
6. Инвестиго
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Инвестиго, из медика в маги. Том 6. Финал

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Имя нам Легион. Том 8

Дорничев Дмитрий
8. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 8

Зауряд-врач

Дроздов Анатолий Федорович
1. Зауряд-врач
Фантастика:
альтернативная история
8.64
рейтинг книги
Зауряд-врач

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Душелов. Том 3

Faded Emory
3. Внутренние демоны
Фантастика:
альтернативная история
аниме
фэнтези
ранобэ
хентай
5.00
рейтинг книги
Душелов. Том 3

Бастард Императора. Том 3

Орлов Андрей Юрьевич
3. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 3

Ни слова, господин министр!

Варварова Наталья
1. Директрисы
Фантастика:
фэнтези
5.00
рейтинг книги
Ни слова, господин министр!