Величайшее шоу на Земле: свидетельства эволюции.
Шрифт:
Справа бактериофаг T4, который паразитирует на бактерии.
Он похож на лунный посадочный модуль, и он ведет себя довольно схоже, «приземляясь» на поверхность бактерии (которая намного больше), потом становясь на свои «паучьи ноги», затем проталкивая зонд в середине сквозь клеточную стенку бактерии и впрыскивая внутрь свою ДНК.
Вирусная ДНК затем захватывает оборудование бактерии, производящее белки, которое перенастраивается для создания новых вирусов.
Другие два вируса на картинке делают что-то подобное, хотя они не выглядят или не ведут себя как лунные аппараты.
Во всех случаях их генетический
Три вида вируса
Большая часть того, что вы видите на картинках, является белковым контейнером для генетического материала, а в случае Т4 («лунного посадочного модуля») — оборудованием для заражения хозяина.
Интересен способ, которым этот белковый аппарат собирается.
Он действительно самосборный.
Каждый вирус собирается из нескольких ранее произведенных молекул белка.
Каждая молекула белка, способом, который мы увидим, ранее самособралась в характерную «третичную структуру» в соответствии с законами химии, с учетом его конкретной последовательности аминокислот.
И затем в вирусе молекулы белка соединяются друг с другом, чтобы сформировать так называемую «четвертичную структуру», снова следуя локальным правилам.
Не существует никакого глобального плана, никакого чертежа.
Субблоки белка, которые соединяются как кирпичи Lego, в форме четвертичной структуры, называют капсомерами.
Обратите внимание, как геометрически совершенны эти маленькие конструкции.
Аденовирус в середине имеет ровно 252 капсомера, нарисованные здесь как маленькие шарики, расположенные в виде икосаэдра.
Икосаэдр является платоновской совершенной объемной фигурой, которая имеет 20 треугольных граней.
Капсомеры расположены икосаэдром не по какому-либо генеральному плану или чертежу, а просто каждый из них локально повинуется законам химического притяжения, когда наталкивается на других подобных ему.
Это тоже, что и формирование кристаллов, и, по сути, аденовирус может быть описан как очень маленький полый кристалл.
«Кристаллизация» вирусов — особенно красивый пример «самосборки», который я рекламирую как главный принцип, посредством чего собираются живые существа.
«Лунный посадочный модуль», фаг Т4 также имеет икосаэдр в своем основном хранилище ДНК, но его самоорганизующаяся четвертичная структура является более сложной, включающей дополнительные единицы белка, собранные в соответствии с другими локальными правилами в аппарате инъекции и «ногах», прикрепленных к икосаэдру.
Возвращаясь от вирусов к эмбриологии более крупных существ, я прихожу к моей любимой аналогии с человеческой техникой конструирования: оригами.
Оригами — это искусство конструктивного сворачивания бумаги, развитого на наиболее продвинутом уровне в Японии.
Единственным оригами, которое я знаю как собрать, является «Китайская джонка».
Я выучился
Одна биологически реалистичная особенность состоит в том, что «эмбриология» китайской джонки проходит через несколько промежуточных «личиночных» стадий, которые сами по себе являются привлекательными творениями, так же как гусеница — красивое, работоспособное промежуточное звено на пути к бабочке, которую она едва напоминает вообще.
Начав с простого квадратного листка бумаги, и просто сворачивая его — никогда не разрезая, никогда не склеивая и никогда не внося какие-либо другие части, процедура проходит у нас через три узнаваемых «личиночных стадии»: «катамаран», «ящик с двумя крышками «и «картину в раме» до достижения кульминации во «взрослой» китайской джонке.
В пользу аналогии с оригами, когда вас впервые учат, как сделать китайскую джонку, не только сама джонка, но и каждая из трех «личиночных» стадий — катамаран, ящик, рамка картины — возникает неожиданно.
Ваши руки могут это складывать, но Вы решительно не следуете чертежу китайской джонки или любой из личиночных стадий.
Вы следуете ряду правил складывания, у которых, кажется, нет никакой связи с конечным продуктом, пока он наконец не появляется как бабочка из своей куколки.
Таким образом, аналогия оригами отражает нечто вроде важности «локальных правил», в отличие от глобального плана.
Также в пользу аналогии оригами, складывание, сворачивание и выворачивание наизнанку являются частью излюбленных уловок, используемых эмбриональными тканями при создании тела.
Аналогия особенно хорошо работает на ранней эмбриональной стадии.
Но она имеет свои недостатки, и вот два очевидных.
Во-первых, для складывания необходимы человеческие руки.
Во-вторых, развивающийся бумажный «эмбрион» не становится больше.
Он заканчивает, веся ровно столько, как и вначале.
Чтобы удостоверить различие, я буду иногда упоминать биологическую эмбриологию как «раздувающееся оригами», а не просто «оригами».
Китайское оригами с тремя "личиночными стадиями": "катамаран", "коробка с двумя крышками" и "картинка в рамке"
Фактически, эти два недостатка отчасти уравновешивают друг друга.
Листки тканей, сгибающиеся, сворачивающиеся и выворачивающиеся наизнанку в развивающемся эмбрионе, действительно растут, и это тот самый рост, обеспечивающий часть движущей силы, которая в оригами вводится человеческой рукой.
Если вы хотите сделать модель оригами из листа живой ткани вместо мертвой бумаги, существует, по крайней мере, существенный шанс, что, если лист будет расти только правильным способом, не однородно, а быстрее в некоторых частях листа, чем в других, то это может автоматически заставить лист принимать определенную форму — и даже складываться, сворачиваться или выворачиваться наизнанку определенным способом — не требуя рук для деформации и складывания, и не требуя какого-либо глобального плана, а лишь локальных правил.