Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Конечно, замена металлических лопастей на более легкие композитные может дать дополнительные преимущества: уменьшение расходов горючего, увеличение полетной нагрузки и т. п., то есть принести некоторый экономический эффект.

Однако практика показала, что экономический эффект от замены традиционных лопастей на композитные весьма невелик: цена летного часа не зависит от величины перевозимого груза, а экономия горючего за счет выигрыша в весе за 1000 часов эксплуатации составит не более 10 % от цены комплекта.

Возникает уместный вопрос: а нужны ли вообще лопасти из композитных материалов? Да, нужны, но только в определенных случаях. Во-первых, при создании скоростных машин, когда необходимо использовать способность композитов выносить большие переменные деформации. Во-вторых, при разработке боевых вертолетов, лопасти которых должны работать,

несмотря на серьезные повреждения конструкции. И в-третьих, при конструировании новых, более легких летательных аппаратов, когда экономический эффект от уменьшения массы конструкции будет выше затрат на использование композитных материалов.

Конструктивно-технологические особенности процесса намотки

Выберем для рассмотрения наиболее простую для такой технологии конструкцию, состоящую из изготавливаемых отдельно лонжерона и хвостовых секций (или сплошной хвостовой секции на всю длину лопасти) (рис. 1). Для получения необходимых жесткостных и прочностных свойств лонжерона, как в аспекте однократного нагружения, так и в аспекте циклической прочности, необходимо определенным образом расположить волокна композита. Это расположение характеризуется углами аир. Можно предположить, что, наматывая нити на оправку лонжерона по определенной программе, мы получим заданное расположение волокон с оптимальными углами намотки для различных сечений лопасти. В результате может показаться, что задача решена и необходимые свойства получены. Но это только на первый взгляд. Дело в том, что конструкция композита должна иметь неизменяющиеся или слабо изменяющиеся свойства по всему объему материала и достаточно низкую ползучесть.

Рассмотрим способность технологии обеспечить равномерность свойств по всему объему композита.

Сечение лонжерона представляет собой дельтовидную фигуру. В ней можно выделить небольшие участки, где кривизна имеет значительную величину — это r 1, r 2, r 3, и участки, где кривизна весьма мала — это R 1, R 2, R 3, (рис. 2).

Представим, что лонжерон равномерно вращается вокруг длинной оси лопасти Z, а нить, которая наматывается на лонжерон, изначально натянута с некоторой силой. Если длина нити невелика, а сама она достаточно жестка на растяжение, то усилие, которое действует в нити, будет изменяться по углу поворота лонжерона. При этом натяжение будет больше в моменты прохождения участков малых радиусов (r) и меньше в моменты прохождения участков с большими радиусами (R). Разумеется, могут быть задействованы различные устройства, сглаживающие колебания сил натяжения, но полностью избавиться от этого вряд ли удастся. При этом побочным, но реальным результатом, по-видимому, будет низкая скорость намотки, а это имеет уже прямое отношение к производительности процесса.

Итак, первое важное наблюдение: натяжение нитей на участках с большой кривизной больше, чем натяжение нитей на участках с малой кривизной. Это фактор, который может воздействовать на свойства получаемого композита в разных местах лонжерона. Однако даже если предположить, что при формировании композита в местах с различной кривизной натяжение одинаково, термомеханические процессы протекают по-разному. Можно считать, что при одинаковых давлении, температуре и времени отвердения свойства композита на различных участках лонжерона будут одинаковы. Но если давление на разных участках будет различным, это вызовет разницу свойств композита (хотя различие свойств возникает лишь при большом различии давлений).

Но дело в том, что натяжение нитей на участках с кривизной также создает давление. Следовательно, давление на участках r и R могут сильно различаться. В процессе нагрева связующее получает достаточную податливость, в результате чего нити выдавливают связующее. При этом уменьшается натяжение нити и связующее перетекает в участки с меньшим давлением. В результате на участках большой кривизны появляются слои с обедненным количеством связующего и слои с увеличенным количеством связующего (см. рис. 3). Кроме того, созданная конструкция обладает внутренними напряжениями (различными

на разных участках), которые уравновешиваются внешними силами на границах с оправкой и прессформой. При извлечении лонжерона из прессформы внутренние напряжения перераспределяются, и лонжерон становится изогнутым и закрученным.

Рис. 1 Лонжеронная конструкция лопасти

Рис. 2 Сечение лонжерона

Рис. З Участки большой кривизны

Однако и это не самое важное. Важно то, что появляются участки с различными прочностными и усталостными свойствами. Возможно, что для некоторых конструкций и некоторых видов нагружения обеднение композита связующим может оказаться несущественным, так как оно незначительно влияет на прочность. Например, прочность при растяжении пластины с однонаправленными волокнами определяется прочностью нитей, а не связующего, которое только связывает волокна.

В лонжероне же лопасти ситуация принципиально иная. Выше мы уже говорили, что необходимые интегральные прочностные и жесткостные характеристики композита получаются за счет расположения нитей под определенными углами. А это расположение таково, что становится ясно: за жесткостные характеристики несут ответственность нити, а за прочностные (главным образом за долговечность) — связующее.

Из этого следует, что в подобных композитных конструкциях содержание связующего должно быть не менее 28–30 %. Эти параметры обеспечивают статическую и усталостную прочность (сопротивление переменным нагрузкам). Проводимые на МВЗ эксперименты показали, что в лонжеронах лопастей, создаваемых намоткой, содержание связующего колебалось на одном и том же лонжероне от 14 до 35 %. Это — осредненные значения для образцов, вырезанных из мест конструкции со сравнительно регулярной укладкой и геометрией. Толщина этих образцов равна толщине стенки или полки лонжерона (рис. 4). Можно предположить, что изучение содержания связующего по слоям в нерегулярных местах может показать еще большее различие в толщине слоев. К сожалению, такие исследования не проводились. Зависимости же усталостной прочности от процентного содержания связующего хорошо известны (рис. 5) И если избыток связующего создает проблемы с геометрией сечения, балансировкой, весовым совершенством, вибрациями вертолета, то недостаток связующего снижает усталостную прочность, что может привести к самым непредсказуемым и негативным последствиям.

Можно утверждать, что намоточная технология применительно к лонжеронам лопастей, имеющим дельтовидную форму сечения, имеет «генетический» дефект, по-видимому, неустранимый или трудноустранимый. Разумеется, это не означает, что такие лопасти вообще недолговечны. При достаточно низких относительных деформациях они могут использоваться. Но такая технология не позволяет извлечь все возможные выгоды использования свойств композитных материалов, получить более легкие, более долговечные лопасти и несущие винты с большим КПД.

Разумеется, из сказанного нельзя делать вывод о порочности намоточной технологии в принципе. Напротив, для тел вращения и близких к ним по форме эта технология весьма целесообразна.

Рис. 4 Компоненты напряжений в выделенном элементе отсека лопасти

Рис. 5 Зависимость усталостной прочности от процентного содержания связующего

Поделиться:
Популярные книги

Вторая жизнь

Санфиров Александр
Фантастика:
боевая фантастика
альтернативная история
6.88
рейтинг книги
Вторая жизнь

Виконт. Книга 1. Второе рождение

Юллем Евгений
1. Псевдоним `Испанец`
Фантастика:
фэнтези
боевая фантастика
попаданцы
6.67
рейтинг книги
Виконт. Книга 1. Второе рождение

Возвращение демонического мастера. Книга 2

Findroid
2. Вселенная Вечности
Фантастика:
фэнтези
героическая фантастика
5.00
рейтинг книги
Возвращение демонического мастера. Книга 2

Кодекс Охотника. Книга VIII

Винокуров Юрий
8. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VIII

Наследник и новый Новосиб

Тарс Элиан
7. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник и новый Новосиб

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Отморозок 4

Поповский Андрей Владимирович
4. Отморозок
Фантастика:
попаданцы
фантастика: прочее
5.00
рейтинг книги
Отморозок 4

Наследник с Меткой Охотника

Тарс Элиан
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Наследник с Меткой Охотника

Гримуар темного лорда VII

Грехов Тимофей
7. Гримуар темного лорда
Фантастика:
боевая фантастика
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Гримуар темного лорда VII

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

Красноармеец

Поселягин Владимир Геннадьевич
1. Красноармеец
Фантастика:
боевая фантастика
попаданцы
4.60
рейтинг книги
Красноармеец

Отмороженный 9.0

Гарцевич Евгений Александрович
9. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 9.0

СД. Том 13

Клеванский Кирилл Сергеевич
13. Сердце дракона
Фантастика:
фэнтези
6.55
рейтинг книги
СД. Том 13

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи