Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Итак, ныне шкала Фаренгейта в ходу в странах, где говорят на английском языке, а шкала Цельсия — во всех других странах (включая и те, которые не считаются «англосаксонскими», хотя в них говорят по-английски). Более того, ученые повсюду, даже в Англии и Соединенных Штатах, пользуются шкалой Цельсия.

* * *

Но это еще не все. В 1787 году французский химик Жак Александр Сезар Шарль открыл, что при нагревании газ равномерно расширяется, а при охлаждении так же равномерно сжимается. С

изменением температуры на 1 градус Цельсия газ прибавляет или теряет ровно 1/273 объема, который он занимает при 0 градусов по Цельсию.

Расширение газа при нагревании не удивляет, но вот сжатие его наводит на любопытную мысль. Предположим, охлаждается газ, имеющий объем 273 кубических сантиметра при 0 градусов по Цельсию. При –1 градусе по Цельсию он потеряет 1/273 первоначального объема, который сократится до 272 кубических сантиметров. Легко догадаться, что если газ будет терять по одному кубическому сантиметру на каждый градус, то при –273 градусах по Цельсию он «съежится» до нулевого объема и исчезнет с лица земли.

Шарль и его последователи, несомненно, понимали это, но не беспокоились. В действительности газы при охлаждении не следуют до конца закону Шарля (так теперь называется это открытие). Сжатие постепенно прекращается, и еще до –273 °C все газы (об этом и тогда догадывались, а теперь все знают) превращаются в жидкости, а закон Шарля к жидкостям неприменим. Конечно, можно представить себе совершенный газ, который ведет себя в точном соответствии с законом Шарля. Совершенный газ сжимался бы действительно равномерно и неуклонно, он никогда не превратился бы в жидкость и исчез бы при –273 °C. Но поскольку совершенный газ — это всего лишь химическая абстракция, которая не может реально существовать, то беспокоиться не о чем.

В течение первой половины XIX столетия постепенно утвердилось мнение, что газы состоят из отдельных частиц — так называемых молекул, находящихся в быстром и хаотичном движении. Следовательно, каждая из них обладает кинетической энергией (то есть энергией движения), а температура представляет собой меру кинетической энергии молекул вещества при данных условиях. Температура и кинетическая энергия движения молекул возрастают и уменьшаются одновременно. Два вещества имеют одну и ту же температуру, когда молекулы каждого из них движутся с одинаковой кинетической энергией. В сущности, именно это равенство кинетических энергий воспринимается человеческими органами чувств (и нашими бесчувственными термометрами), когда мы говорим, что оба вещества имеют одинаковую температуру.

Но отдельные молекулы в данном объеме газа при любой температуре отнюдь не обладают одинаковыми энергиями. Энергии отдельных частиц будут самыми различными, что вызывается случайными столкновениями, в результате которых одни молекулы временно оказываются обладателями большого запаса энергии, а другие — сравнительно малого. Однако при каждой температуре газ можно охарактеризовать определенной средней кинетической энергией.

В 1860 году шотландский математик Джеймс Клерк Максвелл вывел формулы, которые выражают распределение энергии по молекулам газа при любой температуре и позволяют подсчитывать среднюю кинетическую энергию.

Спустя некоторое время английский ученый Уильям Томсон (которому был только что пожалован

титул лорда Кельвина) предложил строить температурную шкалу, исходя из кинетической энергии молекул. При 0 °C средняя кинетическая энергия молекул любого вещества имеет некоторую определенную величину. С понижением температуры на каждый градус Цельсия молекулы теряют 1/273 своей кинетической энергии. (Это напоминает закон Шарля, но уменьшение объема газа происходит не совсем равномерно, тогда как убывание энергии молекул, — а уменьшение объема является лишь неизбежным косвенным следствием этого — происходит совершенно равномерно.) Это означает, что при –273 °C, или, точнее, при –273,16 °C молекулы имеют нулевую кинетическую энергию. Вещество — любое вещество — больше охладить нельзя, так как отрицательная кинетическая энергия — вещь немыслимая.

Следовательно, температуру –273,16° можно считать «абсолютным нулем». Если построить новую шкалу, в которой за начало взять абсолютный нуль, а каждое деление взять равным обычному градусу Цельсия, то любое показание шкалы Цельсия можно пересчитать в соответствующий отсчет по новой шкале, просто прибавив к нему 273,16. (Новую шкалу называют абсолютной шкалой, или шкалой Кельвина, что более справедливо, раз уж решено называть шкалы по имени их изобретателей; градусы этой шкалы обозначаются либо буквой А, либо буквой К.) Таким образом, вода замерзает при температуре 273,16°К, а кипит при 373,16°К

Вообще

К = С + 273,16;

С = К – 273,16.

Вы можете спросить, кому нужна шкала Кельвина. Что меняется от простого прибавления 273,16 к каждому показанию шкалы Цельсия? Что это дает нам? А вот что.

Очень многие физические и химические свойства материи меняются в зависимости от температуры. Возьмем в качестве простого примера объем совершенного газа (с которым мы встречались, когда говорили о законе Шарля). Изменение температуры при неизменном давлении вызывает изменение его объема. И было бы очень удобно, если бы объем менялся строго пропорционально температуре, то есть удвоение одного отвечало бы удвоению другой.

Но если пользоваться шкалой Цельсия, то пропорциональности не получается. При увеличении температуры, скажем, с 20 до 40 °C объем совершенного газа не удваивается. Он просто увеличивается на 1/11 часть первоначального объема. Напротив, если температуру отсчитывать по Кельвину, то удвоение объема в самом деле соответствует удвоению температуры. При возрастании ее с 20 до 40°К, затем до 80°К, до 160°К и так далее объем газа каждый раз будет удваиваться.

Короче говоря, в шкале Кельвина более удобно описывать поведение всего, что есть во Вселенной (и ее самой) при изменениях температуры, чем в шкале Цельсия или любой другой.

Здесь же я хочу сказать о том, что, охлаждая любое вещество, физик отнимает у молекул какую-то кинетическую энергию. Все когда-либо изобретенные для этой цели устройства могут изъять лишь часть кинетической энергии, как бы мало ее ни было. При каждой попытке охладить вещество кинетической энергии остается в нем все меньше и меньше, но всю ее вещество никогда не сможет отдать охлаждающему устройству.

Поделиться:
Популярные книги

Истинная со скидкой для дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Истинная со скидкой для дракона

Герцог и я

Куин Джулия
1. Бриджертоны
Любовные романы:
исторические любовные романы
8.92
рейтинг книги
Герцог и я

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Росток

Ланцов Михаил Алексеевич
2. Хозяин дубравы
Фантастика:
попаданцы
альтернативная история
фэнтези
7.00
рейтинг книги
Росток

Демон

Парсиев Дмитрий
2. История одного эволюционера
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Демон

Огромный. Злой. Зеленый

Новикова Татьяна О.
1. Большой. Зеленый... ОРК
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Огромный. Злой. Зеленый

Запечатанный во тьме. Том 1. Тысячи лет кача

NikL
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
5.00
рейтинг книги
Запечатанный во тьме. Том 1. Тысячи лет кача

Тайны ордена

Каменистый Артем
6. Девятый
Фантастика:
боевая фантастика
попаданцы
7.48
рейтинг книги
Тайны ордена

Кодекс Охотника. Книга VI

Винокуров Юрий
6. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VI

Неудержимый. Книга XXI

Боярский Андрей
21. Неудержимый
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неудержимый. Книга XXI

Возлюби болезнь свою

Синельников Валерий Владимирович
Научно-образовательная:
психология
7.71
рейтинг книги
Возлюби болезнь свою

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Виконт, который любил меня

Куин Джулия
2. Бриджертоны
Любовные романы:
исторические любовные романы
9.13
рейтинг книги
Виконт, который любил меня

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7