Вид с высоты
Шрифт:
По этой причине ученые не достигли абсолютного нуля и не надеются сделать это, хотя они уже творят чудеса, достигая температур порядка 0,00001°К.
Во всяком случае, мы обнаружили здесь еще один предел, ответив на вопрос: «Как холодно самое холодное?»
Но предел холода — это скорее «глубина самого глубокого», а меня интересует «высота самого высокого», то есть вопрос, нет ли предела горячему и если есть, то где он.
Обратимся еще раз к кинетической энергии молекул. Элементарная физика учит, что кинетическая энергия Е движущейся частицы равна 1/2mv2,
Но количество кинетической энергии, как я уже упоминал, можно измерить температурой T. Поэтому в формуле (1) можно вместо Е поставить Т (я также изменю постоянную, чтобы получилось правильное число в тех единицах измерения, которыми нам предстоит пользоваться). Итак,
Если в этой формуле температуру Т брать в градусах Кельвина, а массу частицы m — в атомных единицах масс, то средняя скорость частиц v получится в километрах в секунду.
Рассмотрим, например, некий объем газообразного гелия. Он состоит из отдельных атомов гелия, причем масса каждого из них равна 4 в атомных единицах. Пусть его температура равна температуре таяния льда (273°К). Тогда в формуле (2) на место Т станет число 273, а на место m — число 4. Подсчитав результат, мы узнаем, что средняя скорость атомов гелия при температуре таяния льда равна 1,31 км/сек.
Так же вычисляются скорости при других значениях Т и m. Скорость молекул кислорода (масса равна 32) при комнатной температуре (300°К) равна
Формула (2) говорит нам, что при любой данной температуре чем легче частица, тем быстрее она движется. Она также показывает, что при абсолютном нуле (T = 0) скорость любого атома или молекулы, каковы бы ни были их массы, равна нулю. Это еще один путь убедиться в абсолютности абсолютного нуля. Абсолютный нуль — это точка абсолютного (почти абсолютного) покоя атомов и молекул.
Но если нулевая скорость молекул и атомов — нижний предел температуры, то нет ли у нее и верхнего предела? Разве скорость света, о чем мы уже говорили в начале статьи, не является верхним пределом скорости? Когда температура поднимается так высоко, что v в формуле (2) достигнет скорости света и уже не сможет подняться выше, разве мы не достигнем абсолютной вершины, где настолько горячо, что уж горячее быть не может? Давайте предположим, что так и есть, и посмотрим, что из этого получится.
Перепишем формулу (2) так, чтобы можно было подсчитывать прямо. У нас получится
T = 40mv2. (3)
Коэффициент 40
Возьмем величину скорости молекул v сразу равной максимальной возможной скорости, то есть 299 779 км/сек — скорости света. Тогда мы получим, по-видимому, максимально возможную температуру (Tмакс).
Тмакс = 3 600 000 000 000 m. (4)
Но теперь нужно знать величину m (массу частиц). Чем выше значение m, тем выше максимальная температура.
А при температурах, исчисляемых миллионами градусов, все молекулы и атомы рассыпаются, остаются голые ядра. При температурах в сотни миллионов градусов уже возможны реакции слияния простых ядер в сложные. При еще более высоких температурах должен происходить обратный процесс: все ядра должны развалиться на простые протоны и нейтроны.
Итак, надо думать, что где-то около максимально возможной температуры (а она, по-видимому, лежит далеко за триллионом градусов) существуют только свободные протоны и нейтроны. Их массы в атомной шкале равны единице. Таким образом, с точки зрения формулы (4) мы делаем вывод, что максимально возможная температура равна 3 600 000 000 000°К.
Но действительно ли мы должны принять этот вывод?
Увы, надо признаться, что во всем доказательстве начиная уже с формулы (3) была ошибка. Я предполагал, что значение m постоянно, то есть если уж атом гелия имеет массу, равную 4, то он сохраняет ее неизменной при любых обстоятельствах. Вообще так и было бы, если бы взгляды Ньютона на Вселенную были абсолютно правильны. Но в ньютоновской Вселенной нет такой вещи, как максимальная скорость, и, следовательно, температура не может иметь верхнего предела.
В эйнштейновском понимании Вселенной верхний предел скорости установлен, следовательно, есть и надежда определить верхний предел температур, но масса, по Эйнштейну, не постоянна. Масса любого предмета (какой бы ничтожной при обычных условиях она ни была, лишь бы нулевой) растет с повышением скорости, становясь бесконечно большой в пределе при скорости света (коротко это можно записать так: «Масса становится бесконечно большой при световой скорости»). При обычных скоростях, скажем не более нескольких тысяч километров в секунду, масса возрастает настолько незначительно, что добавку к обычной массе покоя учитывают разве что в самых точных расчетах.
Однако, когда речь идет о скоростях, почти равных или равных скорости света, масса m в формуле (4) бесконечно возрастает и становится неограниченно большой, какую бы частицу ни взять. Следовательно, то же самое происходит и с Tмакс. Ни в ньютоновской, ни в эйнштейновской Вселенной нет предела увеличению температуры. Здесь нет наивысшей высоты самого высокого.
Часть IV
Астрономия
13. Ну и температура!
Любой уважающий себя ученый или просто человек, близкий к науке (я говорю о близких к науке, чтобы не оставить за бортом самого себя), мечтает оставить в ней заметный след. Разумеется, в самом хорошем смысле этого слова.
Увы, большинству из нас приходится расставаться со своей мечтой. Я давно понял, что мечтаю напрасно. Сердце подсказывает мне, что никогда «закон Азимова» не попадет на страницы учебников физики, никогда «реакция Азимова» не будет запечатлена в учебниках химии. Возможность создать «теорию Азимова» и даже просто высказать «гипотезу Азимова» ускользнула от меня, и я остался ни с чем.