Виролюция. Важнейшая книга об эволюции после «Эгоистичного гена» Ричарда Докинза
Шрифт:
Не надо, однако, удивляться и тому, что были и такие специалисты, которые придерживались обратного мнения. Даже в те годы, когда сформировался и упрочился современный дарвинизм, некоторые ботаники продолжали считать гибридизацию источником эволюционных изменений в растениях, невзирая на то, что говорили по этому поводу коллеги-зоологи. Споры одних с другими частенько принимали весьма напряженный характер.
При гибридизации происходит слияние мужских и женских половых клеток и слияние геномов двух родительских форм жизни. Процесс этот столь сложен, а и возможные последствия столь запутанны и многозначны, что ученые и по сей день не смогли понять их. Известно, что геном новообразованного гибрида подвергается значительной реорганизации. Кроме сложного взаимодействия родительских геномов, в процесс вовлекаются негенетические (эпигенетические)
100
Ryan F. Genomic creativity and natural selection: a modern synthesis. Biological Journal of the Linnean Society 2006; 88: 655–672.
Ядро клетки растения либо животного содержит двойной набор хромосом, по одной от каждого родителя. Этот набор назван «диплоидным», от греческого слова «двойной». Если половинки набора получены от особей одного вида, они практически идентичны. Но при гибридизации их получают от особей разных видов, и генетические различия между ними велики. В прошлом эволюционные биологи полагали, что при гибридизации происходит удвоение нормального набора хромосом и гибрид получает четверной набор вместо двойного. Увеличение числа хромосом называется «полиплоидия», и наличие четверного набора называется, таким образом, «тетраплоидия». Поскольку тетраплоидия встречается довольно редко, тетраплоидный гибрид вынужден будет скрещиваться с нормальными, диплоидными особями — и потомки их будут нести три набора хромосом, то есть будут триплоидными. А поскольку три набора не могут разделиться надвое в процессе формирования половой клетки, гибридизация неизбежно приводит к стерильности.
Например, гибрид тетраплоидного и диплоидного арбузов триплоидный — и потому не имеет семечек. У мулов немного иначе, поскольку мул — это потомок лошади, имеющей шестьдесят четыре хромосомы, и осла, имеющего шестьдесят две. Мул, получая по половине хромосом от каждого из родителей, имеет шестьдесят три хромосомы — и потому стерилен. Именно такие примеры привели выдающегося генетика, лауреата Нобелевской премии за работы по искусственно вызванным мутациям Германа Дж. Мёллера к заключению о малой роли полиплоидии в эволюции животных, поскольку половое размножение становится невозможным [101] .
101
Muller H. J. Why polyploidy is rarer in animals than in plants. American Naturalist 1925; 59; 346–353.
Мёллер полагал, что пол у большинства животных определяется различиями в хромосомах — как X- и Y-хромосомы у человека — и что триплоидность — обязательная промежуточная стадия в формировании гибридов. Но Мёллер ошибался, причем весьма серьезно. Пол большинства животных определяется не разницей в хромосомах, и триплоидность не является обязательной стадией в формировании гибридов. Именно благодаря таким ошибкам исследование полиплоидии у животных и растений на протяжении целого столетия было неполноценным и недостаточным. Именно с такими предрассудками пришлось бороться Ризебергу в его работе с гибридами подсолнечника.
В 1987 году Ризеберг стал членом исследовательского коллектива в ботаническом саду «Ранчо Санта Анна» в Южной Калифорнии. Главной темой его исследований стала эволюционная история однолетних североамериканских подсолнухов. Как он вспоминал позднее, то время было идеальным для начала исследований по эволюции, поскольку внезапно стал доступным целый ряд новых молекулярных и генетических методов исследования. Цитируя Ризеберга: «Я изучал происхождение дикорастущего в Калифорнии подсолнуха, который считается классическим примером гибридизации. Но исследование на молекулярном уровне показало: это вовсе не гибрид. Полученный результат подтолкнул меня к более широкому изучению гибридизации у подсолнухов».
Ризеберг применил молекулярный и генетический анализ к двум другим видам подсолнухов, Helianthus annuus и Helianthus petiolaris, дико растущих в сравнительно мягких и благоприятных условиях в центральных и западных областях США. Затем он сравнил результаты с результатами, полученными для трех других видов, Helianthus anomalus, Helianthus deserticola
Если смотреть лишь на хромосомы, то эти растения не заподозрили бы в гибридности. Они не были полиплоидами, имели нормальное число хромосом. И это было воистину замечательное открытие [102] . Это было первое экспериментальное подтверждение того, что новый вид может развиться посредством гибридизации и сохранить нормальное число хромосом в геноме. Этот случай назвали «гомоплоидной гибридизацией» — и он повлек за собой весьма важные для теории эволюции последствия.
102
Rieseberg L.H. Homoploid reticulate evolution in Helianthus: evidence from ribosomal genes. American Journal of Botany 1991; 78:1218–37.
В 1993 году Ризеберг стал руководителем лаборатории в университете Индианы, в Блумингтоне, где продолжил работу с подсолнухами, и после десятилетних трудов снова удивил научный мир, создав гибридный вид посредством полового скрещивания видов-прародителей [103] . Его успех тут же поставил перед биологами новые животрепещущие вопросы: как же произошли гибридные виды? Как долго занимает в природе процесс образования такого вида? Есть ли у гибрида преимущества над видами-прародителями?
103
Rieseberg L. H., Raymond O., Rosenthal D.M., et al. Major ecological transitions in annual sunflowers facilitated by hybridisation. Science 2003; 301: 1211–1216.
В суровых естественных условиях, где росли природные гибриды, выведенные гибриды Ризеберга выжили, а их прародители погибли. Гибриды вообще выглядели выносливее и крепче. Семена их были больше, корни у них росли быстрее, а значит, они быстрее добирались до подземных водоносных пластов, листья их были уже и не такие сочные, как у прародителей, что сокращало потерю влаги в жарком сухом климате. Они быстрее зацветали и отцветали, что позволяло лучше воспользоваться кратким сезоном дождей, и корни их впитывали меньше минералов, что позволяло приспособиться к жизни в соленой почве. По мнению Ризеберга, этих преимуществ оказалось более чем достаточно, чтобы гибриды превратились в новый вид за пятьдесят — шестьдесят поколений, что «всего лишь мгновение с точки зрения эволюции» [104] .
104
Ananthaswamy A. Hybrids survival in the desert. New Scientist 2003,16 August: 12–13.
Благодаря этим открытиям подсолнухи сделались главным тестовым объектом для изучения образования видов в ботанике. Работа с ними повлекла важные последствия для экологии, для изучения возникновения и гибели видов растений. Мы теперь знаем, что такие растения, как пшеница, кукуруза, сахарный тростник, кофе, хлопок и табак, — гибриды, полученные либо проводимой человеком селекцией, либо природным образом. Недавние исследования показали: семьдесят процентов нынешних цветковых растений прошли через один или более циклов хромосомного удвоения, а частота такой гибридной полиплоидии у папоротников может достигать девяносто пяти процентов [105] . И поскольку гибридизация не только увеличивает генетическую сложность, но и оставляет след во всех грядущих поколениях, гибридизация растений теперь рассматривается как самостоятельная движущая сила эволюции.
105
Soltis D.E., Soltis P. S. Polyploidy: recurrent formation and genome evolution. TREE 1999; 14: 348–352.