Водородное топливо. Производство, хранение, использование
Шрифт:
3. «Бирюзовый водород» – получают разложением метана на водород и твердый углерод путем пиролиза. Дает относительно низкий уровень выброса углерода, который может быть либо захоронен, либо использован в промышленности, и он не попадает в атмосферу.
4. «Голубой водород» – производится путем паровой конверсии метана и газификации угля, но при условии улавливания и хранения углерода, что дает примерно двукратное сокращение выбросов углерода.
5. «Серый водород» – производится путем паровой конверсии метана, пиролиза природного газа/угля и газификации угля.
Рис. 2.1.
С помощью газификации бурого угля образуется синтез-газ – смесь углекислого газа (CO2), монооксида углерода (CO), водорода, метана и этилена. Очень неэкологичный процесс по сравнению с другими методами.
Производство серого водорода значительно отличается от производства зелёного водорода. В наши дни водород в основном производится за счет паровой конверсии метана (SMR, steam methane reforming) – из природного газа или после газификации угля. Этот отработанный в промышленных масштабах, дешевый процесс еще долго не будет иметь никаких конкурентов по себестоимости получаемого водорода (1–2 долл./кг в зависимости от цены газа и угля). Но в эпоху «энергетического перехода» не менее важной характеристикой процессов становится их углеродный след. Паровая конверсия метана приводит к эмиссии углекислого газа – 10 кг СО2/кг H2. Поэтому такой водород называют «серым» – в зависимости от сырья (газ или уголь) он либо сопоставим с обычным природным газом, либо в 2,5 раза хуже него по этому показателю. Очевидно, для декарбонизации экономики лучше использовать природный газ, чем «серый» водород – поэтому он не может быть частью водородной экономики будущего. Одна из альтернатив – производство «серого» водорода только в комбинации с технологиями по улавливанию и хранению углекислого газа (CCS – carbon capture and storage). Полученный таким образом водород называют «голубым» В отличие от SMR, технологии CCS еще далеки от полномасштабной коммерциализации. По данным Global CCS Institute, в 2018 году в мире насчитывалось лишь 18 крупных проектов с технологией улавливания СО2, еще 5 было в стадии строительства и 20 – в различных стадиях разработки.
В апреле 2019 года получил положительное заключение экологической экспертизы демонстрационный проект производства «голубого» водорода из бурого угля бассейна Латроб-Валли в Австралии с последующим экспортом водорода в Японию – Hydrogen Energy Supply Chain, развиваемый под управлением японской фирмы Kawasaki.
Голубой водород имеет хорошие перспективы в странах экспортерах ископаемого топлива, где цена его невелика – хотя коммерциализация технологии CCS потребует еще значительных усилий.
Вторая альтернатива «серому» водороду – «зеленый» водород, получаемый электролизом с помощью энергии с минимальным углеродным следом – в первую очередь, от ВИЭ. Не всякий водород, получаемый электролизом, можно называть «зеленым» – всё зависит от углеродного следа используемой для этого электроэнергии. Так, большинство известных установок в Германии пока используют электроэнергию из энергосистемы, а не исключительно от ВИЭ, поэтому из-за в целом довольно высокого ее углеродного следа получаемый водород является «серым». Подключение электролизера изолированно к ВИЭ может решить эту проблему – но в этом случае загрузка электролизера падает примерно вдвое: она не может быть выше коэффициента использования установленной мощности ВИЭ. Только «зеленый» водород, полученный от ВИЭ, является краеугольным камнем для водородной экономики в целом, вокруг него концентрируются исследования в большинстве водородных программ.
В то же время, энергокомпании с существенным портфелем АЭС тоже претендуют на свое место на глобальном рынке водорода. В апреле 2019 года французская EDF, владеющая 58 атомными энергоблоками, заявила о запуске дочернего бизнеса Hynamics, который сосредоточится на поставках и обслуживании электролизеров,
Еще один способ уменьшить углеродный след – частично использовать в качестве сырья биомассу/биогаз.
Основные компоненты водородной энергетики представлены на рис. 2.2.
Рис. 2.2. Основные компоненты водородной энергетики
Для получения водорода в данный момент существует множество различных путей из ряда известных источников. Среди источников получения водорода можно выделить природное топливо: метан, уголь, древесина, нефтепродукты, техногенные горючие газы. При взаимодействии топлива с парами воды или воздухом образуется синтез-газ – смесь СО и Н2. Из нее затем выделяется водород.
Другой источник – отходы сельскохозяйственного производства, из которых получают биогаз, а затем – синтез-газ. Промышленно-бытовые отходы тоже используются для производства синтез-газа, что способствует одновременно и решению экологических проблем, поскольку отходов много и их нужно утилизировать. В конечном счете образуются углекислый газ, водород и окись углерода.
Дальше идет каталитическая очистка, электрохимическая конверсия и т. д. Очень важным элементом при преобразовании газа, содержащего водород, является очистка газа. В конечном счете получается чистый водород. Водород можно получать также электролизом воды, то есть разложением ее под воздействием электрического тока, получаемого от различных источников энергии. В дальнейшем полученный водород поступает в системы хранения или транспортируется к потребителям.
Существует четыре основных источника промышленного производства водорода: природный газ, нефть, уголь и электролиз.
В последние годы особое внимание обращают еще на один важный природный источник метана – Мировой океан. Когда метан, поднимаясь из недр земли, встречается с водой, просочившейся сквозь трещины земной коры, он сразу остывает. При этом образуется вещество – гидрат метана. Это горючее вещество, его запасы превышают запасы нефти, угля и природного газа, вместе взятые.
В условиях истощения запасов привычных видов топлива оно может сыграть весьма положительную роль в энергетике, но его использование может привести к изменению климата.
Разнообразие источников получения водорода является одним из главных преимуществ водородной энергетики, так как повышает энергетическую безопасность и снижает зависимость от отдельных видов сырья.
Методы получения водорода подразделяются на физические, электрохимические и химические.
К физическим методам относятся те процессы, в которых исходное сырье (газовая смесь) уже содержит свободный водород и требуется тем или иным физическим путем освободить его от остальных компонентов.
В электрохимических методах выделение водорода из его химических соединений осуществляется разложением последних под действием электрического тока.
Химические методы являются наиболее распространенными способами получения водорода в целом и, в особенности для нефтеперерабатывающей и нефтехимической промышленности.
В настоящее время существует некоторые способы промышленного производства водорода:
– паровая конверсия метана и природного газа;
– газификация угля;